Course

Learn and practice
on examples

Julia Szota-Pachowicz

BPMVIN

Course

Learn and practice
on examples

MODELING VIEW PRESS

www.modelingview.com

BPMN Course

Learn and practice on examples

Copyright @ 2019 by Julia Szota-Pachowicz

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means without the prior written permission of the publisher, except in the case of brief quota-
tions embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. The author
and publisher will not be held liable for any damages caused or alleged to be caused directly or indirectly by
this book.

Cover design by GroupMedia
First published: July 2019

ISBN 978-83-953432-1-6

Published by Modeling View Press

www.modelingview.com

Table of Contents

Introduction /7
OMG & BPMN /7
Scope and construction /8

Example 1: Chocolate cake /11

Learning outcomes /11
1.1. Bake chocolate cake /12
THEORY: Subprocess /14
Using subprocesses /15
AND-Split and AND-Join /16
THEORY: Parallel gateway /17
Using start and end events /18
THEORY: Subprocesses, start and end events - modeling rules /19
1.2. Make cake process /20
Irrelevant order of tasks /20
THEORY: Ad-Hoc subprocess /22
Ad-Hoc subprocess vs. AND-split / AND-join /24
Parallel activities /24
Activity with additional restrictions /25
THEORY: Timer event /26
Activity restrictions and process levels /30
Use of text annotations to make the model unambiguous /31
THEORY: Text annotations /32
1.3. Make cream process /33
Identify tasks and subprocesses within the top-level process /33
Activity interrupted by other activity /34
THEORY: Conditional event /37
1.4. Data flow /39
THEORY: Data flow elements /39
Data object modeling rules /41

Example 2: Scrum /43

Learning outcomes /43
2.1. Scrum process /44
Multi-instance process /44
THEORY: Loop subprocess characteristics /45

Table of Contents

Subprocess called within execution of another activity /47
THEORY: Event subprocess /48
Introducing subprocesses and process levels /53
Boundary event /55
THEORY: Boundary event /55
Process participant /58
THEORY: Pool /58

2.2. Planning Meeting /59
Decision point /60
Number of end events in the process /60
THEORY: Exclusive gateway /61
Process organization /62
THEORY: Lanes /63
Collaborative activities /64

2.3. Daily Scrum /67
Activity deadline /67
Event subprocess deadline /68
Loop vs. multi-instance subprocess /70
Sequential tasks vs. multi-instance task /71
THEORY: Loop task characteristics /72

2.4. Review Meeting /73
Message event and process participants /75
THEORY: Message event /75
Catch events in the process /78
Event subprocess vs. boundary event /79
Explicit goals of activities /81

2.5. BPMN Collaboration /83
THEORY: Collaboration /83
THEORY: Message flow /84
Review meeting process - collaborative or not? /85
Identifying external process participants /88
Review meeting collaboration /89
Multiplicity of Participant /91
When and how use Message flows /91
Black box or white box? /93

2.6. Retrospective meeting /94

2.7. Process levels models /95

Table of Contents

Example 3: Library /99

Learning outcomes /99
3.1. Borrow book process /101
Define top-level process elements /101
Define transition conditions between top-level process elements /105
Activity performance dependent on conditions /106
Wrong usage of exclusive gateway /107
Model alternative process flows using exclusive gateway /108
Including all possible process ends /110
3.2. Reserve book process /113
THEORY: Event-based gateways /115
Undo changes /118
THEORY: Compensation /120
Ending the whole process from the child level /123
Joining throw intermediate event and none end event /125
THEORY: End events - their effect and usage within processes /126
3.3. Manage book order /135
Use of event-based gateway - advanced /136
Compensation of many tasks within the same process /138
3.4. Manage borrowed book /141
Loop subprocess without end event /142
Process designed as a loop vs. loop activity marker /143
Breaking the loop process /144
Conditions on exclusive gateway leading to the same results /146
Consistency with parent process model /148
3.5. Return book /149
3.6. Collaboration - advanced /151
Black box external process /151
Different instances of external processes have influence on the internal process /152
Subprocess within a pool - what to do with boundary events /155
Message flow associated with collapsed subprocesses /158
System-driven and human-driven processes /159

Would you like to learn more? /165
References /166

Introduction

The book teaches how to model processes using BPMN 2.0 based on design problems that
arise during the modeling of a specific issue. The book is in the form of a course aimed at those
who know the basics of BPMN. There are three fully explained examples. We first present the
problem and then try to solve it with different modeling approaches so you can also learn how
to approach the analysis of processes.

Every process can be modeled in number of ways, from model interpretation to the use and
naming of different BPMN elements. This book shows the most common solutions. It also pre-
sents the most common mistakes and incorrect interpretation of BPMN modeling rules. Each
solution is explained, supported by theory and compared with others. All the BPMN elements
and approaches are described theoretically on the basis of the official BPMN specification. The
reader will gain knowledge about what solutions to use in a specific case, which interpretational
traps to avoid and how to skillfully read models.

This book doesn’t teach BPMN from scratch so you should ideally have some basic knowledge
of BPMN notation and its main concepts before beginning. The book also doesn’t introduce all
BPMN concepts - it explains the BPMN elements used and needed to resolve the modeling
issues presented.

The book presents examples of non-executable processes, which are commonly used for docu-
menting business processes within organizations. Within the examples, we will model both private
and public processes and collaboration.

I'm confident that, through reading this book

... You will learn how to solve common issues related to process modeling using BPMN

... you will understood what aspects should you pay attention to when analyzing and modeling processes
... BPMN elements and modeling rules will become clearer to you

... you will start to create better models.

OMG & BPMN

The Business Process Model and Notation (BPMN) was developed by the Object Management
Group (OMG) [1]. The OMG provides a free formal specification, guides and tutorials of BPMN.
All information can be found at: http:/www.bpmn.org/

Introduction

Scope and construction

The book uses three fully explained business process examples:

e Baking a chocolate cake®
e The (software development) Scrum process®
e Library - borrowing a book process®

All three processes have been adjusted for the purpose of practicing BPMN rules and creating
BPMN models.

The book is organized as follows

Every example starts with a process description. We start with high level analysis of the process
description to model the top-level process. Next, we analyze more detailed elements and model
child-level processes. Every child-level process may also contain subprocesses that are modeled
as child-level process within a particular subsection. So the approach is as follows:

top-level
process

This is a child-level process for the
top-level process.

This is the parent process for its
child-level processes.

subprocess subprocess subprocess

For the top-level process,
this is a child-child-level
or grandchild-level process.

subprocess subprocess subprocess

Figure 1: Process levels

W The Baking a chocolate cake and Library process descriptions have been prepared by the author.
@The Scrum process description has been prepared based on The Scrum Guide [2].

Introduction

For every level of the process, you will find:

e Process analysis and a detailed explanation of why it is modeled in such a way;

o |[f applicable, different possible solutions as well as common modeling and interpretation
mistakes.

In each example you will find:
e TIP - useful tips and information that is worth remembering. General TIPs are in the
summary of the discussion and can be used in similar design problems.
e THEORY - subsections that present the full theory about a given BPMN element, de-
sign pattern or modeling approach. These are prepared based on the free official BPMN
2.0 specification [1].

Within the examples, we will model private and public processes and collaboration.

More examples and theory can be found at: www.modelingview.com

Example 1:
Chocolate cake

Let's start with the process of baking a chocolate cake, which we model based on a recipe.

Learning outcomes

Based on this example we discuss and learn

e How to divide a process and organize a model within process levels
e When it's worth using subprocesses

e AND-join and AND-split modeling patterns

¢ AND gateway theory and modeling rules

e What is a parallel box and an Ad-Hoc subprocess, and when use them
e Activity naming conventions

e What are Text Annotations and when to use them

e How to use and interpret Timer events

e How to model additional restrictions related to tasks

e What are Conditional events

e What makes a model explicit and unambiguous

e Data flow modeling elements and rules

1.1. Bake chocolate cake

Process description

Chocolate cake recipe

Chocolate cake

Mix the margarine with the sugar; add the eggs, vanilla,
cocoa powder and flour. Mix everything together
adding the water. Bake for 1 hour at 180 degrees C.
After cooling, decorate cake with egg white cream
(see below).

Egg white cream

Dissolve 2 teaspoons of gelatin in 3 tablespoons of
water. Pour sugar into boiling water; boil to dissolve
the sugar. Pour the hot syrup onto the egg whites
while whipping. At the end, add the dissolved gelatin,
a pinch of salt and the vanilla sugar.

1.1. Bake chocolate cake

Ingredients

250g margarine

2 cups sugar

2 eggs

3-4 teaspoons cocoa powder
2 Y% cups flour

1 cup water

1 % teaspoons vanilla sugar

Ingredients

250g margarine

2 cups powdered sugar

2 eggs (whites only)

3-4 teaspoons cocoa powder
2 % cups flour

1 cup water

% teaspoons salt

1 Y% teaspoons vanilla sugar

We start by creating a model of the top-level Bake chocolate cake process. In order to do this, we
must extract the basic top-level elements of the process. For a baking example, it could simply
be the preparation of the individual main dough ingredients.

TIP: When modeling a top-level process, try to distinguish the main parts first, and next find

dependences between them.

According to the recipe, we can distinguish two basic steps of chocolate cake preparation:

e Make cake
e Make cream

The next question is how these steps, Make cake and Make cream, are related to each other. In
which order they should be performed? Going through the recipe once again, two solutions
arise. We may model the process in the order that it's written in the recipe: first make the cake

12

1.1. Bake chocolate cake

then make the cream. We can also interpret these steps as independent as there is no obstacle
to these processes being carried out in any order.

The next question is, are there any other dependences and activities that may be classified as top-
level process elements and influence the process flow? The common element that can be performed
after cake and cream are ready is decoration of the cake with the cream. From the recipe: “After
cooling, decorate cake with the egg white cream.” We decide to model this activity within the top-level
process as it's performed only after other top-level activities have been completed.

Look at the top-level process examples below. In the first case we don't enforce which activity
should be done first - cake or cream - as these activities are completely independent (Figure 2A).
If you want to model the process as it is written exactly in the recipe, use solution B (Figure 2B).
The decision is up to you and what you want to achieve by the model: give the cake maker a free
hand or suggest that he/she should start with cake preparation.

A
Activities performed
independently
V
-
Make
cake
e N
— Decorate
{) cake with *»O
N cream
~ N J

Make

cream
B

Activities performed in a
given order
V
s N s } ~ ™
Y Make Make Decora.te
{) — cake with
__/ cake cream
- k cream

N J J

Figure 2: Bake chocolate cake top-level process examples

13

1.1. Bake chocolate cake

The Make cake and Make cream steps are modeled as collapsed subprocesses as we consider
them as separate processes, each consisting of tasks.

THEORY: Subprocess

A subprocess is a lower-level process within a process called a child-level process and may
include activities, gateways, events and sequence flows. A standard subprocess is part of
a sequence flow. It has incoming and outgoing flows.

We can hide or show details of a subprocess by modeling it as collapsed or expanded.

I N

Process 1
N
IS B I R
TN
Process 1 J\ /—» Task 1 Task 2
N o ‘ |
. / . J
N J

A standard subprocess that lacks more complex behavior such as boundary events or
compensation mechanisms is just a container that groups activities needed to achieve
some specific goal/behavior. This means that if we move the ‘subprocess boundary’ and
put subprocess elements directly into the parent process, the flow of the parent process
won't change.

A Logic and flow of
both processes A
and B is the same.

I V
(N Task 2
W, as
N p .
\ J
TN
| —> Task1l % — Task5 O
— e N e ~ | NS
Task 3 H Task 4

14

s

A/

Subprocess

1.1. Bake chocolate cake

~N Y e

> Task1 Task 2 Task 5 m
N
Task 3 H Task 4
J ~

Using subprocesses

Using subprocesses makes the higher level process easier to read and understand. It makes the
process easier to develop as you focus on and model smaller parts at a time.

TIP: To show only high a level view of the process or hide some details, use collapsed sub-
processes.

Do we always need to model a top-level process using subprocesses? Only if it consists of many
activities. A good practice is to create process models that have no more than a few steps. This
results in process simplicity.

Always try to look at the process as simply as possible. Creating a simple top-level process doesn’t
mean simplifying it. It's rather showing the process in a readable and easy to analyze way. This
also gives you better understanding of the end-to-end process.

Deciding what steps are shown directly within a top-level process can be a really hard task that
influences the child-level models. It’s really worth thinking it over carefully. The are no strict rules
on how to distinguish subprocesses from the parent process. However, these tips may help you:

e The distinguished part should not change the logic and sense of the process. In other
words, if you remove the ‘subprocess boundary, the parent process shouldn’t change.

e Think about the purpose of the subprocess. It should group activities that lead to some
defined goal.

e Does the subprocess improve the readability of the parent process?

15

1.1. Bake chocolate cake

AND-Split and AND-Join

As a further example, we will model a solution saying that there are no dependences for what
should be prepared first: cake or cream (Figure 3). Let’s discuss this in more detail. To model
activities that are performed independently we use the AND-split (also called fork), which is a
parallel gateway. AND-split is very often misinterpreted as a place in the process that indicates
activities performed in parallel. However, AND-split is used to model independent activities,
rather than parallel activities.

AND-split Make AND-join
(fork) |~ cake | (synchronization)
. L B
p
N Decorate
() cake with
~— cream
[
Make
cream

Figure 3: AND-Split and And-Join in Bake chocolate cake process

To decorate a cake with a cream we need to have both: cake and cream. When two or more
flows need to reach some point in the process so the flow can go further, we can use a parallel
gateway that joins independent paths into one. It's called AND-join or synchronization. AND-
join is a place in a process that waits for all input paths.

16

1.1. Bake chocolate cake

THEORY: Parallel gateway

When we branch the flow using a parallel gateway (also called AND gateway), all outgo-
ing paths are chosen - and that’s all you need to know. There is no condition or rule for
what happens later on each path, so we cannot use this gateway to force activities to be
performed in parallel.

AND-split ‘

Because we don't declare any conditions for a parallel gateway, all outgoing and all incom-
ing paths are in some sense equal. For this reason you cannot use default and conditional
sequence flows as outgoing flows from an AND gateway.

‘ You mustn’t use
conditional or default
flow with AND gateway

V

When we use a parallel gateway to join independent paths, this is then a synchroniza-
tion point. The AND gateway waits for all incoming flows, which may come in at different
times, before flow can go further through the gateway. Only once all the paths reach the

gateway can the process go further. We can interpret this as a synchronization of flows,
rather than an activity itself.

17

1.1. Bake chocolate cake

AND-join

Using start and end events

In the Bake chocolate cake process we also use start event and end event. Use of a start event
and end event are optional - you may choose not to include them on your diagram. However,
it's recommended to use them because they make the process clearer.

TIP: Clear beginning and end! Use start and end events to make the model unambiguous.
TIP: Use the minimum number of start events. It makes the process easier to understand.

General rules relating to the use of start and end events within standard processes and subpro-
cesses are as follows:
e You can use one or more start events and one or more end events in the process. Just
remember that you must use both types of events or neither.
e It's not allowed to use a start event without ending the process with an end event.

e It's not allowed to end a process with an end event without starting it using at least one
start event.

18

1.1. Bake chocolate cake

This is a correct but not
recommended solution.
Most tools display an
error if you don’t use

) E— start and end events.
Make v
cake
Decorate
cake with
cream
\ J
Make
cream
\. J

Figure 4: Bake chocolate cake process without start and end event

THEORY: Subprocesses, start and end events —
modeling rules

We can use start and end events independently for each level of our model. By ‘level of the
model’ we mean top-level process, subprocess or other process called by a call activity.

You may choose whether or not to
use start and end events for each
process or subprocess.

N

Subprocess 1

O s ~
YN
L/

.)

A J

A subprocess is part of a standard flow within its parent process. That's why you can use
only the none start event to trigger a subprocess. No other types are allowed!

19

1.2. Make cake process

You can use only the none start event
to start a subprocess. No other start
event types are allowed.

N

(Subprocess 2)

N __J

N J

You can additionally use other types of start events within a subprocess, but if they are
triggered, they would instantiate the top-level process so this is not recommended. It's
simply unclear and can cause misunderstanding.

1.2. Make cake process

Irrelevant order of tasks

Let's now analyze the Make cake process in more detail.

Follow the recipe: “Mix the margarine with the sugar; add the eggs, vanilla, cocoa powder and flour.
Mix everything together adding water. Bake for 1 hour at 180 degrees C. After cooling, decorate the
cake with the egg white cream.”

The first question is: what are the steps of this process? According to the recipe, we may distin-
guish three main steps: add ingredients, mix ingredients and bake dough. The first thing we need
to do is to mix the margarine with the sugar; next we add the other ingredients: eggs, vanilla
cocoa powder and flour.

The next question is: what's the order (dependencies) between these activities? First we add
ingredients, then we mix everything - so it seems that the order of adding ingredients doesn’t
matter. Again, we are faced with the decision of whether we model according to the way ingredi-
ents are listed in the recipe or whether we let the cook decide what should be added first. Look
below at three sample solutions (Figure 5). Let’s discuss them.

20

1.2. Make cake process

margarine Add eggs Add vanilla
W|th sugar

Add cocoa
powder

H Add flour

P —
Mix
margarine

with sugar
-~

T
Mix
margarine

with sugar
J

Add ingredients
N e

Add cocoa

Add eggs powder

Add vanilla Add flour

Add eggs

Add vanilla

Add cocoa
powder

~.

Add flour

\ —

Figure 5: Model examples of tasks related to adding ingredients

21

1.2. Make cake process

All three models represent the same part of the flow and have the same tasks. All of them are
correct and do not change the general flow of the process which follows from the recipe. So what
are the differences between them? The first diagram (Figure 5A) enforces task order by using a
sequence flow. If you want to say to the reader that some tasks have some defined order that
can't be changed, use a simple sequence flow.

If the order of two or more activities doesn’t matter, is unknown or unspecified, you can use
the Ad-Hoc subprocess (Figure 5B). Note that the task Mix margarine with sugar could also be
included within the Ad-Hoc subprocess; however, our intention is to explicitly show that this is
the first thing you should do. The other ingredients can be added in any order the cook chooses.

TIP: Use the Ad-Hoc subprocess when the order of tasks is irrelevant, unknown or when
tasks are optional.

If activities are independent and all should be performed, we may use AND-split / AND-join
(Figure 5C).

Don't use fewer tasks to avoid ordering (Figure 6). A common mistake is to present similar activi-
ties within one task. For such a simple process, it even makes the process clearer at first glance.
However, this is not a recommended approach as we pack four activities into one task.

Four activities

in one task
V
/4 N (\
Mix Add eggs,
margarine vanilla, flour,
with sugar cocoa powder
) N)

Figure 6: Example of packing many activities into one task

TIP: One activity per BPMN task.

THEORY: Ad-Hoc subprocess

The Ad-Hoc subprocess gives the performer the ability to decide how and which activi-
ties are performed. It means that some activities may be performed sequentially, some in
parallel, and some can be omitted and not executed.

22

1.2. Make cake process

For non-executable processes, the Ad-Hoc subprocess is used when the order of activities

is irrelevant and there is no execution dependency between them. The decision of how to
perform the activities is up to the performer.

-

~
Task 2 Performer decides how and
which tasks are executed
A V
e ™
— Task 3
Task 1 —_

J

When we use a subprocess without the Ad-Hoc marker, all activities that don’t have incom-

ing flows are instantiated when the subprocess starts. For a subprocess with the Ad-Hoc
marker, this rule doesn'’t apply.

You may use sequence flows between particular activities in an Ad-Hoc subprocess to
enforce the order of execution for some selected activities.

By

Task 1

Task 3 is performed only
after completion of Task 2.

Performer decides how to
perform Task 1 and Task 2.

V

23

1.2. Make cake process

Ad-Hoc subprocess vs. AND-split / AND-join

Previously we used AND gateways to model independent steps, but now we additionally pro-
pose the Ad-Hoc subprocess. So what'’s the difference between the Ad-Hoc subprocess and the
AND-split / AND-join pattern?

When using the AND-split / AND-join pattern, we provide information that all activities between
the AND gateways must be performed and the order of performing them is unimportant. When
we use the Ad-Hoc subprocess, we say to the reader that the performer decides how activities
are performed. In this case, the performer may also not perform some of the activities. Usually
the Ad-Hoc subprocess is used to say: it's up to you how to perform all these steps.

Remember that we want learn different BPMN modeling approaches. In real life processes, such
modeling decisions make a difference so you need to be sure how exactly the process flow is
interpreted.

In this example, to organize the adding ingredients tasks we will use solution B, with an Ad-Hoc
subprocess.

Parallel activities

Let’s go further. After the ingredients have been added, we mix all the ingredients together add-
ing water at the same time. This is an example of tasks performed in parallel. To model this, we
may use a subprocess without start and end events. It's called a parallel box.

(Tasks Mix ingredients
and Add water are
Mix performed in parallel
ingredients V
. J
Add water
-)
AN J

Figure 7: Activities performed in parallel

24

1.2. Make cake process

Why do we use a subprocess without start and end events to model parallel activities? According
to the BPMN specification, all flow elements without incoming sequence flows are instantiated
when the process is instantiated. So when our subprocess starts, all included tasks without an
incoming flow also start. The process ends when all included tasks end; this is a synchronization
mechanism. This solution is adopted in BPMN to model activities performed in parallel.

Activity with additional restrictions

The last task in the Make cake process is to bake the dough for 1 hour at 180 degrees C. This
is an example of a task that can be performed if some requirement is met and is performed till
another requirement is met. You can model such a task directly:

~

Bake dough
for 1 hour at
180 degrees

J

Figure 8: Task with restrictions introduced within task title

From a semantic point of view and also considering the process flow, this is an acceptable solu-
tion. However, good practice is to pull out and separately model restrictions related to an activity.
Let's exercise such an approach.

The Bake dough activity has two additional requirements:
e Baking time - 1 hour
e Baking temperature - 180 degrees C.

We may interpret this as follows: we can start the baking once the oven is heated to 180 degrees,
and we should bake the dough for 1 hour - so after one hour the activity should end. The first
of these is an input requirement. The second restriction is an output requirement.

TIP: If a task has additional restrictions, use additional BPMN elements like events or gate-
ways to model them explicitly.

To explicitly model when we can start baking, we can use a conditional intermediate event.
A conditional event is triggered when a condition becomes true - in our case when the oven
temperature reaches 180 degrees. Then, the process proceeds and we can start to bake the dough.

We can generalize this example and say that if some activity has an external input requirement,
then to check if it's met, you may first use a conditional intermediate event in the flow.

25

1.2. Make cake process

Add ingredients

Add eggs Add cocoa Mix

powder ingredients
- Mix L)) .) Bake dough
margarine >
\ /;/ for 1 hour
with sugar e N R
Oven heated

Add vanilla Add flour Add water to 180 degrees

- SN J

~
\ J

Figure 9: Make cake process with conditional intermediate event

And what about second requirement - bake for 1 hour? This is related to time, so the use of the
timer event arises. Let’s consider the behavior of the timer event first.

26

THEORY: Timer event

A timer intermediate event used in a sequence flow informs about a delay in a process,
not about how long a specific activity lasts. For a timer event, we may define a specific
date/time or a cycle. It’s interpreted as follows:

Task 1 ends and the process waits for 4 days before continuing the flow and starting Task 2.

) —

TN /‘7’\
\\/‘# Task 1 ‘ a@, =‘ Task 2

N 4 days

Task 3 ends and the process waits till 09:00 before continuing the flow and starting Task 4.

Task 4

% s (@)
Q 9:00

A timer intermediate event attached to the boundary of an activity is used to activate
an exception flow. The event is triggered after a specified time or at specified time if the
activity is still active. An activity itself can be interrupted or not. It's interpreted as follows:

Interrupted case: During execution of Task 1 and after 20 minutes from its start, the timer
event fires. Task 1 is interrupted (cancelled) and the process is continues through an ex-
ception flow to Task 3.

1.2. Make cake process

) e N

7N
(—— Task1l > Task 2
__/)

\) t

S

20 minutes) —
Task 3

Non-interrupted case: During execution of Task 4, at 07:00 the timer event fires and the
process goes through an exception flow to Task 6. In this case, Task 4 is still active, so after

it ends the process goes to Task 5.
> Task 5 }—O

When using a timer event as a process trigger, the event behavior is the same. The timer
event triggers a process for a specific date/time or on a specific cycle.

Process starts every
day at 10:00

4 E— —
YRR\
() Task 1 Task 2
) ‘{ m
10:00)

A timer start event may also be used as a trigger for an event subprocess. It may be defined
as an interrupting or non-interrupting start event. Read more about event subprocesses
in section 2.1. THEORY: Event subprocess.

The timer event is trigger event - that's why you cannot use it to end a process. BPMN
doesn’t define a timer end event element.

27

1.2. Make cake process

Let's go back to our example. We cannot use a timer intermediate event directly in a flow to
indicate that a cake should be baked for 1 hour. This would mean that before starting baking or
after finishing baking, we need to wait for 1 hour (Figure 10).

Process waits for

The baking time

1 hour is not specified
V V
Y
’f:\“) Bake dough
> |) > | I F >
\&T;//) ake doug
Oven heated 1 hour Y,
to 180 degrees
The baking time Process waits for
is not specified 1 hour
V V
| E—
N 72
N N (€Ty))
r&;//)/ Bake dough —N\\@//
Oven heated {) 1 hour

to 180 degrees

Figure 10: Timer event in a sequence flow
We may use an interrupting timer event attached to the boundary of the Bake dough task. This

means that after 1 hour of baking, we terminate this task. If we want this task to have an enforced
(automatic) deadline, it's a good solution.

After 1 hour of baking task
Bake dough is immediately
cancelled and exception flow

is activated
V
N
= .

'\\\\@s » Bake dough

= S

Oven heated \ \,@\ Yy
to 180 degrees N
1 hpur

Figure 11: Interrupting timer event attached to activity boundary

28

1.2. Make cake process

If we used a non-interrupting timer event attached to the boundary of the Bake dough task, it
would mean that after 1 hour we fire the additional flow. The question is what happens then?
We are not able to answer this question looking at the recipe, so there is simply no point in fir-
ing an additional flow.

After 1 hour of baking we fire
exception flow. Task Bake
dough is still active so when
it ends the process ends
normally.

V

\SA4 !
Oven heated g
to 180 degrees

Bake dough

1 hpur

A

It is not clear what happens on an

exception flow. Exception flow is

activated and ends so there is no
point in using it.

Figure 12: Non-interrupting timer event attached to activity boundary

So how should we model our 1 hour restriction? We may leave it as part of the task name, which
is not recommended as the name should be simple - still, this is acceptable (‘Bake for 1 hour’).
We may use an interrupted timer event to show that after 1 hour, the task must end. Or we
simply transfer additional information through text annotation (Figure 13).

Let's assume that we don’t want to provide a deadline for the Bake dough task but only to inform
the reader about the baking time. Using text annotation, we can achieve this: we inform that we
should bake for one hour, but finishing the task is not enforced and depends on the performer.

e N Ie

Add ingredients ‘ Bake for 1
§ o hour
p N/ ~
Add eggs Add cocoa Mix
powder ingredients
Mix
. J

(——> margarine ——» C — — —v\/ —> Bake dough
- with sugar p - — =
\) Oven heated |)

N4

to 180 degrees

Add vanilla Add flour { Add water

/U J \

~

Figure 13: Bake cake process with information about baking temperature and time

29

1.2. Make cake process

Restrictions related to activities could be also modeled using other BPMN elements, not only
events. A common way is to use an exclusive gateway. Read more about exclusive gateway in
section 2.1. THEORY: Exclusive gateway.

Activity restrictions and process levels

Let’s discuss one more topic related to the ‘right place in the process’ for an activity input require-
ment. Going back to our top-level process, we haven't yet included the information that a cake
needs to be cool before you can decorate it with cream. We may consider this fact as an input
requirement: cake is cool for task Decorate cake with cream. In this case let’s use a conditional event.

And what about the right place in the process for the conditional event: cake is cool? We can
model it in three ways:

e within the Make a cake process (as the last element),

e just after the Make a cake process and before the AND-join, or

e after the AND-join.

In all three cases it won’t change the cake recipe and the logic of the process. However, this is im-
portant for process readability. Putting the conditional event directly before the Decorate cake with
cream task suggests to the reader that this rule should be met in order to start performing the task.

TIP: An input requirement modeled using an event should be placed directly before the
activity it's related to.

Make

cake

\ ,
N Decorate
() cake with
N/ cream

Make

cream

J

Figure 14: Bake chocolate cake top-level process with cake is cool condition

Why we don’t use a task like Cool cake? There is no additional action needed to cool a cake - e.g.
blowing - it just needs to be left to cool so there is no point in using an activity.

30

1.2. Make cake process

TIP: Analyze the process in terms of what is a task and what is an event.

Use of text annotations to make the model unambiguous

Let’s discuss one more topic - ambiguity. Look once again at the Make cake process. For someone
who doesn’t have the recipe, it is not necessarily obvious what the task Mix ingredients means exactly.

Add ingredients) () Bake for 1
hour

e N

Add eggs Add cocoa Mix

() powder ingredients)
TN Mix \)\)) /
[> margarine ——> C - - —{([F])—> Bake dough
o with sugar - N ~N - N =

L Oven heated |)

to 180 degrees

Add vanilla Add flour Add water

N

Figure 15: Make cake process ambiguity

At first glance, as the Ad-Hoc subprocess is named Add ingredients, it may be understood that
the ingredients added in the previous subprocess are those to be mixed. This is, in fact, wrong
as the margarine and sugar are also mixed within the Mix ingredients task.

TIP: Use text annotations to explain the meaning of the terms or words used, so that the
process is unambiguous for everyone.

To make this unambiguous, we could rename the task Mix ingredients to Mix margarine with sugar,
eggs, flour, vanilla, ... or use a text annotation:

A B Ingredients:
margarine with sugar,

.| eggs, vanilla, cocoa

~ N B powder, flour

-

Mix margarine with Mix
sugar, eggs, vanilla, ingredients
cocoa powder, flour
\ J -~ @
e N e
Add water Add water

J \

Figure 16: Achieving unambiguity: A - rename task; B - use text annotation

31

1.2. Make cake process

THEORY: Text annotations

A text annotation provides additional information for the reader. Importantly, it doesn’t
influence the flow.
__.|:Text

A text annotation should be associated with one of BPMN flow object elements. You can
include any information that is important for the process flow or for the process reader.

We discussed the explicitness of the process. So what about the amount of each ingredient in
our Bake chocolate cake process? The model lacks information on how much of each ingredient
should be used.

The easiest way that may come to mind is to communicate the amount of each ingredient within
the task names: e.g. ‘Add 2 eggs.’ In a non-executable process, this is an acceptable solution.
However, the goal of the BPMN flow elements is to show the process flow, not to obscure
readability with too much information that does not have a direct influence on the process flow.

TIP: There are no strict rules on how to name tasks. It is recommended to start with the basic
form of the verb, as the task should describe what action is performed.

To communicate the ingredient amounts, we may also use text annotation, which might be a
better solution taking into account process readability.

2 eggs, 3-4 teaspoons cocoa powder, 2 % cups flour, 1 % teaspoons vanilla sugar
L 1

250g margarine P

2 cups of sugar Add ingredients |) : | Bake for 1
_ p L N hour
Mix ,
Add eggs Add cocoa ingredients =
~ powder - ~
— 4’{ Mix }—’ N) L J 17/ =\ m
{) margarine — {(;/4’{ Bake dough
o with sugar o N —_—
(N Oven heated |)
Add vanilla Add flour Add water to 180 degrees
= / /
1
1cup

Figure 17: Make cake process with information about ingredient amounts

32

1.3. Make cream process

1.3. Make cream process

Let's model the second subprocess: Make cream.

Part of the recipe describes the cream preparation: Dissolve 2 teaspoons of gelatin in 3 tablespoons
of water. Pour the sugar into boiling water, and boil to dissolve the sugar. Pour the hot syrup onto the
egg whites while whipping. At the end, add the dissolved gelatin, a pinch of salt and the vanilla sugar.

Identify tasks and subprocesses within the top-level process

Now let’s try to identify all activities and initially classify which are tasks and which can be or-
ganized within subprocesses. Here are recipe fragments and their analysis:
e Dissolve 2 teaspoons of gelatin in 3 tablespoons of water. This is one undivided activity -
task Dissolve gelatin.
e Pour the sugar into boiling water, and boil to dissolve the sugar. We have at least two activi-
ties that need to be performed to achieve one goal - prepare syrup: dissolve and boil.
We may model them directly within the top-level process if the whole number of steps
won't be too great or we can organize them within a subprocess Prepare syrup.
e Pour the hot syrup onto the egg whites while whipping. At the end, add the dissolved gelatin, a
pinch of salt and the vanilla sugar. We have four activities related to adding ingredients that
we may organize within a subprocess Add ingredients. Another undivided activity is whip.

TIP: Include within a subprocess a consistent part of the flow that leads to a certain result
or can be conceptually separate from the parent process.

Below is the first version of the top-level model (Figure 18). We may also consider to model
Dissolve gelatin and Prepare syrup activities:
e between an AND-Split and an AND-Join
e within an Ad-Hoc subprocess.

Subproces Add
.
(ingredients and task
Add Whip start and end
_ - p) ingredients at the same time.
N) %
YN Dissolve Prepare 4’0
| > .
__/ gelatin syrup) .
Whip
-

Figure 18: Make cream top-level process
33

1.3. Make cream process

To show that when we add all ingredients we need to whip at the same time, we use a parallel
box. Task Whip and subprocess Add ingredients are modeled within the parallel box. The parallel
box mechanism is applicable to any combination of parallel activities - both tasks and subpro-
cesses. To show it in a more compact way, we recommend to always use collapsed subprocesses.

TIP: Activities without incoming flows start when their parent process is instantiated.
This rule is applicable to tasks and subprocesses.

Activity interrupted by other activity

Let’s analyze the process of preparing syrup. The fragment of recipe that describes how to prepare
a syrup is really short: Pour sugar into boiling water, and boil to dissolve the sugar. Everyone knows
what to do reading this fragment so a first step can simply distinguish two tasks.

) —

Pour sugar Boil to

into boiling dissolve the
water sugar

= J - ,/

Figure 19: Prepare syrup subprocess - version A

But is such an approach correct? I'm sure that part of the flow (Figure 19) is clear for everyone
and we may leave it as it is. Still, not all activities are explicitly presented, and based on this simple
example we can practice how to extract all needed elements and model unambiguous flows.

TIP: Create unambiguous models which do not leave room for various interpretations.

Before we pour sugar into boiling water we need to boil the water first - this fact seems to be
obvious but is not presented explicitly in version A (Figure 19). Then we continue boiling till the
sugar is dissolved.

Let's add an activity responsible for boiling the water and interpret this approach (Figure 20): we
boil water, then end this task; next pour sugar (which means that we aren't boiling the water at
this point); then boil the water till the sugar is dissolved. In real life, we just boil the water all the
time till the sugar is dissolved. What could be improved?

1. The task boil should be continuous, not broken up

2. The task boil has an additional restriction that we can model using separate BPMN elements

34

1.3. Make cream process

Pour sugar Boil to
Boil water . g dissolve the
into water
sugar
N J N

Figure 20: Prepare syrup subprocess - version B

TIP: Is there an activity that is interrupted by other tasks? This is a signal that an intermediate
event attached to the boundary of the activity may be a good solution.

In the next three sample solutions (Figure 22), we use a non-interrupting conditional event that
indicates that when the water starts boiling, we pour the sugar and continue this activity.

e A

Boil water

Borled
water

Figure 21: Example of non-interrupting conditional event

The information about dissolving sugar is shown differently:
e Version C - using an interrupting conditional event Sugar dissolved that when it is met,
terminates the task Boil water
e Version D - using an additional task Dissolve sugar
e Version E - using text annotation, we leave the decision on when to stop boiling to the
performer.

35

1.3. Make cream process

C
Task Boil water is
interrupted when sugar
Boil water .p . g
is dissolved.
|4
Bmled Su ar
water dissolved >
S
Pour sugar
into water
L)
D
X Dissolve sugar = boil water with
Bofled sugar. We have two tasks doing
wajter the same.
Pour sugar Dissolve
into water sugar
E Boil till sugar
‘| dissolved
N
Boil water ‘ >
N / | —
Boiled Pour sugar
wa into water

N J

Figure 22: Prepare syrup subprocess - versions C, D, E

36

1.3. Make cream process

THEORY: Conditional event

A conditional event communicates what happens when a defined condition becomes true.

The condition relates to a process’s internal variables or to external environment vari-
ables. It can be specified in any manner that is logical and understandable: x +y = 10,
employee_num > 10, number of participants is bigger than 20, etc.

A conditional intermediate event is used in a sequence flow when some condition must
be met so the process may go further.

~

— =
() Task 1 > (\/ > Task2
N ‘ NS

) Condition L y

A

A conditional intermediate event attached to the boundary of an activity is used to activate
an exception flow. The event can be triggered only if the activity is active. The activity
itself can be interrupted or not. This is interpreted as follows:

During execution of Task 1, if Condition becomes true, Task 1 is interrupted (cancelled) and
the process is continued only through the exception flow to Task 3.

~ ~ ~

~ |
{ /—» Task 1 > Task 2
S =

=7

Condition Y

Task 3 }—»O

- J

During execution of Task 4, if Condition becomes true, the conditional event fires an excep-
tion flow and the process goes to Task 6. Task 4 is still active so after it ends, the process
goes to Task 5.

37

1.3. Make cream process

A conditional event can also be used to start a process: it fires when the condition becomes
true. In this case, however, the start event condition can only reflect external variables.
It cannot specify process variables because the process instance simply doesn't exist yet.
For example, you can define a condition like ‘outside temperature < 25C, or ‘number of
employers in company is over 20, but a condition related to the process itself, for example
‘process data changes state, is forbidden.

e N ~ ™
=N
‘i\g) Task 1 Task 2
Con&ition L Y, . P,

A conditional start event can be also used as a trigger for an event subprocess. It may be
defined as an interrupting or non-interrupting start event. Read more about event sub-
processes in Section 2.1. THEORY: Event subprocess.

The conditional event is a trigger event; that's why you cannot use it to end a process.
BPMN doesn’t define a conditional end event element.

Let's analyze the second collapsed subprocess Add ingredients. Our intention is to show that the
order of adding ingredients is important, so we use a sequence flow to show the order of tasks.
The task Pour syrup on egg whites has an additional input requirement: syrup is hot. As before,
the most common ways to model this in non-executable processes are:

include the condition within the task name: Pour hot syrup on egg whites

use text annotations

use a conditional intermediate event: Syrup is hot within the sequence flow as an event
directly preceding this task.

Just remember that this information should be included in the process (Figure 23).

38

s N e ™ e R
N Pour hot . Add Add vanilla
{ } syrup on egg dissolved Add salt sugar
~ whites gelatin &

\ J

Syrup must
‘| be hot

(\,".' /' N)
N Pour syrup ' Add Add vanilla
)i on egg dissolved Add salt sugar
N whites gelatin €
. v /

. _ -

1.4. Data flow

Pour syrup .
// N
on egg dlssolved Add salt Ad‘:u"zr:'”a
whites gelatin g
Syrup is hot /

Figure 23: Add ingredients subprocess with input requirement for task Pour syrup - three versions

1.4. Data flow

In many models, we also want to include information about what data and information are needed
to perform some activity and what data are produced as a result of some particular step or the
whole process.

BPMN defines special elements responsible for data modeling. In BPMN diagrams we can model
what physical objects and information are used or produced during execution of an activity or the
whole process. So the data flows are about how to model the flow of needed data and objects
within a process.

Modeling data flows is not so obvious and can lead to some mistakes. Using the bake a cake
process, we will practice how to model (and how not to model) data objects within a process.
Let’s start from the theory.

THEORY: Data flow elements

BPMN provides the elements needed to model data flows: data objects, data inputs, data
outputs, data stores.

A data object represents information or a physical object and is used to show how data
are processed during process execution. Its lifecycle depends on the lifecycle of the par-
ent process, which means that the data object exists only as long as the parent process is
active. When the process is finished, the data instance is no longer available.

]

Data input and data output, in contrast to a data object, refer to the whole process. Their
lifecycle is not tied to the parent process lifecycle. We use data input to indicate what data
are needed before the process begins, and data output to indicate what data are a result

39

1.4. Data flow

of the process execution. These types of elements exist respectively before the process

begins and after the process ends.
i Ill ? Ill

Use the data collection marker to indicate the collection of data.

o] [u] (]

To show the flow of the data, we use data association and link data objects with related
activities or events.

....................... >

A data store is used within the process to enable storage, update and retrieval of data that
are used while the process is executed and may exist after the process ends.

A
=

You can also use properties and messages to include information about the data flow.
Unlike data objects and messages, properties are not visible on the diagram.

We know the theory - now let’s do some practice. Let’s analyze data modeling rules based on
the Make cake process (Figure 24).

40

1.4. Data flow

Margarine :
withsugar =" " [-

>h : - : Do
e : O U T N I Y |

———

. Eggs . . Cocoapowder - v :
~~~~~~ L o Lo . Bakefor1
. : Mix : hour
N . : ooy ’ .
Lol Add cocoa Lo ingredients | Z:I—'
Y - Add eggs powder : : : &

Mix Lo .
margarine ——— D e Bake dough .
with sugar Lo N

. : . Water Oven heated
Add vanilla Add flour P 0180 degrees :
Lo Add water :
B : : E> ': E E : : o 'ﬁ
: . Lo : Cake
Vanilla . Flour : D : @
: ~ e D N
: Flour : Water
Vanilla

Figure 24: Data flow of Make cake process

We use data inputs to show what ingredients are added. The interpretation goes as follows: data
exists (ingredients are prepared) before the process begins, and these data items are required to
start performing the particular activity.

To show what ingredients are mixed in the Mix ingredients we used data association and
data objects as inputs and outputs for the task. This means that the result of one activity is used
as input to another (ingredients added to the pot are next mixed together).

Data object modeling rules

A data object can be associated with a task or a subprocess (e.g. dough).

Data objects can be modeled as inputs and outputs of activities that are executed within

the same or different subprocesses within the same process (e.g. flour, eggs, water).

Data objects with the same name within the process represent the same data.

You must not model data input and data output directly associated with a subprocess!
See the diagram below.

41



1.4. Data flow

0. p
Cocoa powder: Lo
Vanilla: - Flour ﬁ

Dough

Using of data input and

Add eges Add cocoa Mix da.\ta output associgted
€8 powder ingredients W|th.a subprocess is
forbidden
V
Add vanilla Add flour
Add water

~

Figure 25: Use of Data inputs and Data outputs associated with a subprocess is forbidden

e You may use a data objects as input and output associated with a subprocess. Look
at the top-level process example. We have deliberately changed the name of the task
Decorate cake with cream to Decorate cake as the data flow shows what items are used in
this task (Figure 26).

e For dataobject, data input and data output you can define a state [state] (Figure 26).

[decorated]

Decorate
cake

Figure 26: Make chocolate cake top-level process with data flow

42



Example 2:
Scrum

In this example we will be working with processes describing the Scrum framework. Process
descriptions are prepared based on The Scrum Guide [2]. Process scope is adapted to the learning
outcomes and does not cover all aspects that may arise in the Scrum framework and software
development.

Learning outcomes

Based on this example we discuss and learn:

e Tasks and subprocesses markers

e The difference between loop and multi-instance activities

e How to model public and private business processes

e The differences between private executable and private non-executable business pro-
cesses

e How to organize and present processes on different levels

e How to identify process participants and avoid mixing them with roles/users within pro-
cess participants

e Message flow modeling rules and message event theory

e Exclusive gateways

e Event subprocesses and boundary events - theory, when to use them and what are the
differences

e How you can organize processes using lanes

e How to model collaborative activities

e Main issues related to Collaboration

43



2.1. Scrum process

2.1. Scrum process

Let's start with an overview of Scrum, which is an incremental framework for managing a team
working on a software development. It consists of iterations called Sprints during which a team
delivers a software product increment.

All Sprints are organized as follows:

e The Sprint starts with a Sprint Planning meeting in which the team determines the goal
for the coming sprint. Development of a new Increment starts after the Planning Meet-
ing.

e Every day of the Sprint at the same time, the Development Team has a 15-min long
meeting called the Daily Scrum or Stand-up, to plan their development work and make
commitments to each other.

e At the end of the Sprint, two meetings take place. The first is a Sprint Review meeting in
which the team presents what was done in the Sprint.

e The final meeting is a Retrospective Meeting in which the team reviews its work and
how to improve it during the next sprint.

People directly involved in the software product development belong to the Scrum team; the
roles are as follows:
e The Product Owner is responsible for building and managing the Product Backlog.
e The Development Team is a self-organized team that drives the sprint to deliver a soft-
ware product increment and manage the Sprint Backlog.
e The Scrum Master in general supports the team in Scrum implementation and facilitates
Scrum meetings.

The two main Sprint artifacts are:
e The Product Backlog: a list of all items (functionalities etc.) needed for the software
product.
e The Sprint Backlog: a list of product backlog items covering the functionality that is
to be delivered at the end of the Sprint - called increment. The Increment consists of
“done” Product Backlog items.

Multi-instance process

Let’s analyze the above description in the context of developing a process model. In general,
Scrum consists of Sprints, which are always carried out one by one. The top-level process has a
Take Sprint subprocess with a multi-instance marker for sequential instances.

44



2.1. Scrum process

TIP: When an activity is performed many times with different data, use the multi-instance
marker.

The marker means that a subprocess is performed iteratively. In each iteration a new instance of
the subprocess is created. This is required for the Take Sprint subprocess as in every sprint, we
use a different set of backlog items and produce a different Increment.

< : Take Sprint .
_

=[]

Figure 27: Top-level scrum process

BPMN specifies two types of markers indicating that a subprocess is performed iteratively. See
the theory section that follows for more information.

THEORY: Loop subprocess characteristics

BPMN distinguishes two types of markers that are used to show that a subprocess is
repetitively executed.

The loop marker is used when the task has a looping behavior. It this case there is one task
instance that iteratively executes some activity till a looping condition is true.

D]

The multi-instance marker also indicates that a subprocess may be performed many times.
However in this case every execution creates a new subprocess instance. This means that
in every iteration, the subprocess may use and produce a different data set. Subprocess
can be performed sequentially or in parallel.

[[]E3

Multi-instance parallel marker Multi-instance sequential marker

45



2.1. Scrum process

Let's now model the Take Sprint process showing how the Sprint is organized. In the Sprint we can
distinguish four types of meetings, which take place at different times but always in a specific order.

/\ Condl_,lct Conduct Conc.juct Conduct.
( Planning Dailv Serum Review Retrospective
S Meeting y Meeting Meeting

Figure 28: Scrum subprocess with order of scrum meetings

We now have two more issues to resolve and model. First we should include one more activ-
ity - the development. Second our model should show that the Daily Scrum is conducted many
times within the Sprint.

Let's start with the first issue. The main activity within Scrum is development that leads to pro-
ducing an Increment. According to the Scrum description, development starts after the Planning
Meeting. However, we don't have exact information on when development of an Increment ends.
Can it be performed till the end of the sprint or should it be finished before the Review Meeting
in which the team presents the results of their work?

A
Conduct
Daily Scrum
i Conduct Conduct Conduct
N Planning Review Retrospective
N Meeting Meeting Meeting
Develop
| Increment
B
Conduct Conduct
Conduct Review Retrospective
Daily Scrum Meeting Meeting
- Conduct
s N .
( \ Planning
N4 Meeting

Develop

Increment

Figure 29: Develop Increment subprocess - two versions

46



2.1. Scrum process

In the first diagram (Figure 29A), development finishes before the Review Meeting, and the Review
and Retrospective meetings are modeled as the last activities in the Sprint. The adopted solution
results from the description “At the end of the Sprint, there is a Sprint Review Meeting in which
the team presents what was done in the Sprint.” and the official Scrum framework graphic. In
the second diagram (Figure 29B) we assume that some work related to the Increment develop-
ment can be performed between and after Review and Retrospective meetings (e.g. testing).
This seems to be a more natural approach as not every Scrum Team needs to plan Review and
Retrospective meetings in the last hours of a Sprint.

For the purposes of the example, we assume that the development ends before the Review
Meeting (Figure 30). In this solution, development and daily Scrum activities are independent
and both are executed after the Planning Meeting and should end before the Review Meeting.

Conduct Conduct
Review Retrospective
Meetmg Meetmg

Figure 30: Sprint process with Daily Scrum meeting and development performed independently

Conduct
Daily Scrum

Conduct
Planning
Meeting

N
L

Develop
Increment

Subprocess called within execution of another activity

The second issue is related to the Daily Scrum. In our current model (Figure 30), a Daily Scrum
starts after the Planning Meeting and it is executed only once. What we want to achieve is to
show that the Daily Scrum meeting is conducted on a daily basis during the time the Develop-
ment Team work on developing an Increment. Or, in other words, that the Daily Scrum is part of
the Development. We may resolve this case in two ways - using an event subprocess or using
a boundary event. Let’s go through the event subprocess theory first.

TIP: If an activity may be performed many times during execution of another activity, use a
non-interrupting event subprocess or a non-interrupting boundary event.

47



2.1. Scrum process

THEORY: Event subprocess

An event subprocess, in contrast to the standard subprocess, is triggered by an event and
is not a part of the standard sequence flow.

Because an event subprocess starts only if a specific event occurs, it has no incoming and
outgoing flows.

. Task1 ‘ This is a correct example of an

event subprocess.
The subprocess is triggered by the
start event and has no incoming
and outgoing flows.

V

@ Task 2 .

Process

This is an incorrect example.
Event subprocess cannot be part
of a sequence flow.

Process
Ty
(%)
2
-

We can use an event subprocess within both top-level processes and subprocesses.

48



2.1.Scrum process

’ Task 3 .

’ Task 1 B —>O
@ Task 2 .

Process

@ Task 4 .

In standard subprocesses, start and end events are optional, and the subprocess may have
many start events.

For an event subprocess, the rules are different. Event subprocess MUST start with a trig-
ger, so a start event and thus an end event are obligatory. What's more, there can be only
ONE start event (one trigger for one event subprocess).

This is an incorrect example.
You can use only one start
event to trigger an event
subprocess

This is a correct example.
One start event may trigger
an event subprocess

@ Task 1 .

49



2.1. Scrum process

An Event subprocess starts with one of the following start events. Other types are not allowed.

Event Type Interrupting Non-Interrupting

‘o it

Message @ |\§;

. J’ -‘\'

Timer |H@.;
Error @

o N

Escalation |kA;
Compensation

o, . J" -‘\

Conditional 1‘\@;

. J’ -‘\

Signal 1\“.;

. J’ -‘\

Multiple ukgj

. J' l‘\

Parallel Multiple lhi}.l-‘.

Most of above start events are interrupting. If an event subprocess starts with an inter-
rupting event, it cancels the process within which it’s fired. If a non-interrupting event is
used, both the event subprocess and the process within which it is fired are active.

50



2.1.Scrum process

This rule also results in the fact that a non-interrupting event subprocess can be triggered
many times, while an interrupting event subprocess can only trigger once as it terminates
the parent process.

An event subprocess cannot have boundary events. This is a very important rule that is
often broken as standard subprocesses and tasks may have boundary events.

This is an incorrect example.
You cannot use boundary
events with an event
subprocess.

Let’s go back to our example. To show that the Daily Scrum is repeated daily, we model the Con-
duct Daily Scrum activity within an event subprocess. The meeting is held daily at some specific
hour so the trigger that fires the event process is a non-interrupting timer event (Figure 31).

A
Conduct Conduct Conduct
Planning Develop Review Retrospective
Meeting Increment Meeting Meeting

,"éé\ Conduct
N Daily Scrum

51



2.1. Scrum process

Develop
Increment

Conduct Conduct Conduct
Planning N . Review Retrospective
Meeting . . Meeting Meeting

Conduct

Daily Scrum

Figure 31: Conduct Daily Scrum subprocess within an event subprocess - two versions

In diagram A (Figure 31), the event subprocess is modeled within the Take Scrum process and
fires from the top level. This means that an event may occur at any time when the Take Scrum
process is active. In diagram B (Figure 31), the subprocess is modeled within a newly introduced
subprocess (without name) and may be triggered only when this process is active. We modeled
it in such way as to show that Daily Scrum meetings are organized while the Development Team
work on an Increment development.

TIP: Model an event subprocess only within a process during which the subprocess start
event may occur.

Which approach is better? All meetings are held at a certain time; using solution A we can’t be
sure that Daily Scrum won’t overlap with Planning, Review or Retrospective meetings. Using
approach B we are sure that Daily Scrum, like development, can only be held after planning and
before review meetings, which we previously assumed.

52



2.1.Scrum process

Introducing subprocesses and process levels

Let’s now discuss the issue of introducing new processes and presenting process levels (Figure 32).

Develop
Increment

Conduct Conduct Conduct
Planning N B Review Retrospective
Meeting : : Meeting Meeting

Conduct

Daily Scrum

Figure 32: Take Sprint process

As we already discussed, every process level should be modeled separately to make the process
easier to analyze and read. Sometimes we deliberately want to show some specific subprocess
expanded. This typically relates to parallel boxes and event subprocess but can also relate to
standard subprocesses that are provided to restrict some specific behavior. In such cases, when
we don’t show the process collapsed at any level, not giving a name to the subprocesses is ac-
ceptable (but still recommended). If at some level the newly introduced process is shown as
collapsed, the title is required.

Look what happens if we now go back to the top-level view of the Take Sprint subprocess with

collapsed child-level subprocesses: the newly introduced subprocess serving as a grouping con-
tainer has no title (Figure 33).

53



2.1.Scrum process

Figure 33: Top-level view of Take Sprint process - newly introduced standard subprocess has no title

To solve this issue we may rearrange subprocesses. Look at the proposal in Figure 34. Conduct
Daily Scrum is ‘part’ of Increment development so it can be included directly within the Develop
Increment process. In this example we won’t analyze how the Develop Increment process is
performed and what elements it consists of. There are a number of approaches and methods
of organizing work within a development team, and we are not going to discuss them here. For
the purposes of the example, we just provide one activity, Develop Software, which we assume

Conduct
Planning

Meeting

Conduct
Review

Meeting

Conduct
Retrospective

Meeting

We haven't titled the
subprocess

N

Develop
Increment

Conduct

Daily Scrum

consists of all the needed steps leading to developing the Increment.

54




2.1.Scrum process

Conduct Conduct Conduct
Planning Develop Review Retrospective
Meeting Increment Meeting Meeting

l

Develop Increment

Develop ‘
Software
(+]

We’ve introducet two
new names of activities:
Develop Software that
. relates to all work related

Conduct : with development and
* Daily Scrum : Make commitment that
: : relates to the main
activity performed during
the Daily Scrum meeting.

V

Make

commitment

Figure 34: Naming of newly added subprocesses.

Boundary event

An alternative to the event subprocess is usage of the boundary event. Let’s look at the theory
of boundary events.

‘ THEORY: Boundary event

A boundary event is an intermediate trigger event attached to the boundary of an activity
that fires an exceptional flow.

55



2.1. Scrum process

56

Only intermediate events can be attached to an activity boundary. Start events and end
events are not allowed. Why? You cannot start a new process when executing some activ-
ity within the current process, or end the whole process in such a way.

The boundary event is always a trigger event. During execution of a task or a subprocess,
some event may occur and somehow influence the process flow. However, an executed
activity itself cannot throw any events. Throw events are used only within a sequence flow
and understood as one of the process steps.

A boundary event can be interrupting or non-interrupting. For any type of event used
as a boundary event, the rules are the same. An interrupting boundary event interrupts
the parent activity to which it’s attached. When an interrupting event is fired, the parent
activity is immediately cancelled. Non-interrupting events do not influence parent activity
performance; this means that if the event is triggered and fires the exceptional flow, the
activity it’s attached to is still active.

The list of events that can be attached to the activity boundary:

Event Type Interrupting Non-Interrupting
Message 'E@I
Timer '5;_3’

Error
Escalation 'E@!
Cancel
Compensation
Conditional ';:jj
Signal 'E:jf




2.1. Scrum process

Event Type Interrupting Non-Interrupting
Multiple "E__‘}u
Parallel Multiple 'E@I
We may resolve the issue related to the iterative performance of the Conduct Daily Scrum subprocess
using a timer intermediate non-interrupting trigger event attached to the boundary of the Develop

Increment subprocess. In this case, the Conduct Daily Scrum subprocess is modeled in an exceptional
flow that is fired by the timer event every day while the Develop Increment subprocess is active.

Sprint ended event ends the
whole Take Sprint process.
Daily Scrum ended event ends
the exception flow.

N Conduct Conduct Conduct
‘/ h Planning Develop Review Retrospective m
N/ Meeting Increment‘ Meetlng Meetlng
T Sprint ended

Conduct
Daily Scrum
Daily Scrum
ended

Figure 35: Conduct Daily Scrum subprocess within exceptional flow

In this version, the Conduct Daily Scrum subprocess is directly seen from the top-level view of the
Take Sprint process. As we also don't need to introduce additional subprocesses, it's seems to be
the simplest version. However in this approach, the Conduct Daily Scrum subprocess is fully con-
tained by the Take Sprint process, not Develop Increment, which means that it doesn’t have access
to Develop Increment variables, e.g. data objects. At this level we don't know if this is necessary,
and to be honest, in non-executable business processes readers usually do not pay attention to
this. Still, this is a very important difference between an event subprocess and a boundary event.
If you want the activity fired during the execution of another activity be contained completely
by this activity, model it as an event subprocess within this activity.

For the purpose of a further example, we use both solution alternatives to discuss other inter-
esting BPMN modeling patterns.

57



2.1. Scrum process

Process participant

So far we've modeled non-executable private business processes. A private process is the basic
process from the author’s point of view that shows all the process details. So far, processes have
been shown without information about who is executing the given process. In BPMN, processes
can be modeled within special containers - pools - that represent the process participant.

THEORY: Pool

A pool is a graphical container of a process that you can title any way you want to. A pool
may represent a team, person, system, organization or any other participant that performs
activities within a process. Using pools is optional. The pool is dedicated to one whole pro-
cess. You cannot use one Pool for many processes or include part of a process within a Pool.

Pool

All the process elements must be drawn inside the Pool. The only BPMN element that
can cross the Pool boundary is a message flow. We discuss message flows in Section 2.5.

THEORY: Message flow

Below is an example of Take Sprint subprocess modeled within a pool that indicates the Scrum
Team (Figure 36). This means that the Scrum Team participates in the process.

- Conduct
o Planning
K _/ Meeting

-

Develop
Increment

-

Conduct
Review
Meeting

Conduct
Retrospective
Meetmg

Conduct
o Planning
N/ Meeting

Scrum Team

-

Develop
Increment

-

Conduct
Review

Meeting

Conduct
Retrospective
Meetlng

Figure 36: Private process without pool and private process within a pool

58



2.2. Planning Meeting

We have a top-level model of the sprint; let’s try to model particular child-level processes related
to meetings. Based on these processes we will learn how to model private and public processes
and collaboration.

2.2. Planning Meeting

Process description

The Planning Meeting is divided into two parts. The first part of the meeting is dedicated to
determining what will be done in the Sprint. At the start, the Product Owner (PO) discusses
objectives and product backlog items related to the goal. Next the Scrum Team collaborates on
understanding the work. As a result of the discussion, the Development Team selects Product
Backlog items for the Sprint. Based on the selected items, the Scrum Team sets up the Sprint
Goal. The second part of the meeting focuses on determining the plan for delivering an Incre-
ment. Knowing the goal and having selected the product backlog items, the Development Team
creates the plan for how to deliver an Increment. The result of this activity is a Sprint Backlog. If
the Development Team thinks it has too much or too little work for a Sprint, it may renegotiate
selected items with the PO.

What activities can we distinguish in the process?
e Discuss Product Backlog items
e Collaborate on work
e Select Product Backlog items
e Set up Sprint goal
e Determine delivery plan
e Renegotiate selected items

We will model all the above activities as tasks, as we have a brief process description and we don’t
have information on exactly how each activity is performed. Could it be divided into smaller tasks?

To indicate that activities consist of other smaller tasks, you may use collapsed subprocesses.

In the first part of the meeting, activities are sequential (Figure 37).

Set up Sprint
Goal

) Discuss Product Collaborate Select Product
N Backlog items on work Backlog items

Figure 37: First part of the planning meeting process

59



2.2. Planning Meeting

Decision point

In the second part of the meeting, the Development Team determines the plan for delivering
Product Backlog items and renegotiates items with the PO if necessary. To model a decision
point (do we have too much or too little work?), we use the exclusive gateway with condition:
too much or too little work. Each of the outgoing flows from the exclusive gateway contains one
of the possible answers (Figure 38).

A .

Renegotiate
true selected .

items

Determine false .
delivery plan
Too much
or too little work
B

Renegotiate
selected
items

Determine
delivery plan

Too much
or too little work

Figure 38: Exclusive gateway - alternative flows and different approaches to ending the process.

Number of end events in the process

We have two solutions that differ in the way the process ends (Figure 38). We can use two end
events or merge alternative paths into one and finish the process with one end event.

In our case, regardless of whether the Product Backlog items are renegotiated with the PO, the
process finishes with a defined Sprint Backlog, which is a delivery plan tied to the team capacity.
We don’t want to underline the fact that items were negotiated - it's not important from our
point of view. Separate end events are also not supported by the next Take sprint process steps.

60



2.2. Planning Meeting

We don'’t have differences in the top-level flow regardless of which event ends the Planning
meeting subprocess. That's why we decide to use solution B.

TIP: If a process finishes with different conditions depending on which path the flow took, use
separate end events to indicate these differences. Each event should be named differently.

TIP: If the process always finishes with the same conditions, use one end event.

Renegotiate
selected

Discuss Product Collaborate Select Product Set up Sprint Determine
J Backlog items on work Backlog items Goal delivery plan

Figure 39: Conduct Planning meeting process

Too much
or too little
work

‘ THEORY: Exclusive gateway

The Exclusive gateway is a decision point that branches the flow into alternative paths.
On each outgoing path we define a condition that is a possible answer for the condition
defined /question asked on the exclusive gateway. The gateway behavior is analogous to
a logical XOR: only one path can meet the condition and can be chosen.

The Exclusive gateway is modeled with or without a marker. The decision is up to the
modeler; however, it is important to be consistent within the whole diagram.

All outgoing paths from an exclusive gateway should include all the possible answers to
the question asked on the gateway. If not, an exception is thrown. To be sure that all pos-
sibilities have been handled, you can use an outgoing default flow.

61



2.2. Planning Meeting

v

Exclusive gateway
with outgoing
default flow.

V

If the gateway is used to merge paths, the path that arrives, goes through the gateway
and continues the flow. It is not a synchronization point! Each incoming path is routed to
the outgoing path without synchronization.

Process organization

Very often in processes we need to additionally categorize activities to show, for example, by
which department, system or role the activity is performed. BPMN provides the possibility to
group and categorize activities within a pool.

The next thing we can do in this exercise is to categorize Planning Meeting process activities

within Scrum Team roles. Our model will explicitly show which role performs each activity. To
categorize activities within a pool we use lanes.

62



2.2. Planning Meeting

THEORY: Lanes

Lanes may represent people, systems, positions in organizations, departments, or any other
concepts that categorize activities within a pool. The most important thing about lanes is that
their meaning is up to the author. The author decides if and how to categorize activities.

Lanes are modeled within a pool. The pool represents process participants whereas lanes ad-
ditionally categorize activities.

There are no restrictions on the number of lanes within a pool. You can also model nested lanes.

Lane 1

Pool

Lane 2

Activities and events must be drawn within one lane. You must not draw an event or activity
between two lanes on the lane boundary.

Don’t use it as a way of Such a solution is not allowed.
. . v Each activity or event must be
modeling collaborative tasks. drawn within a single Lane
N » )
I N
) ( \
c \ f
© N }
S Task 1
a
(o]
g Task 2 O
S

63



2.2. Planning Meeting

In the Planning Meeting process example, the individual steps are performed by people with dif-
ferent roles. In the process we can distinguish activities performed by the Product Owner (PO),
the Development Team or the whole Scrum Team. There are no activities performed only by the
Scrum Master.

Let’s model the Conduct Planning Meeting process with categorization of Scrum Team roles.
The pool indicates the Scrum Team. Analyzing once again the process description and our final
model, we get:

PO and
Development Team
Scrum Team = 1%

PO and Scrum
Master and

Development Development Development Development
PO Team
Team Team Team

V
/" "\ | Discuss Product Collaborate Select Product Set up Sprint Determine
\_/ Backlog items on work Backlog items Goal delivery plan

Figure 40: Analysis of which roles perform each task

Renegotiate
selected
items

Too much
or too little
work

Collaborative activities

In the Conduct Planning meeting process, there are tasks that are performed by many roles at the
same time: e.g. the task Renegotiate selected items. Organizing such tasks between lanes is not so
obvious. Each activity must be in only one lane and must not cross a lane boundary / be between
two lanes. You cannot model one big activity that is between two or more lanes.

So how we can model collaborative activities that, according to our process organization, are
performed within more than one Lane at the same time? Below we discuss different approaches
to this issue.

Let's first model the Conduct Planning meeting process with categorization of basic Scrum Team
roles. We will use lanes:

e PO

e Development Team

e Scrum Master.

64



2.2. Planning Meeting

PO

- " Renegotiate
| Discuss Product Collaborate &
" selected
o Backlog items on work -
items

Renegotiate
selected
items

Determine
delivery plan

Scrum Team
Development Team

Collaborate Select Product Set up Sprint
on work Backlog items Goal
Collaborate
on work

Figure 41: Collaborative tasks copied and modeled within an AND gateway for every related Lane

Too much
or too little
work

Scrum Master

In this solution (Figure 41), tasks that are performed by more than one role are ‘copied’ and mod-
eled independently within AND gateways. In this approach we explicitly show that a collaborative
task is performed by different roles. What's more, it doesn’t change our categorization, and we
have three lanes indicating scrum roles.

Such a solution is commonly used in simple non-executable processes where the number of lines
is quite small. When reading a model, we usually interpret activities with the same name as being
the same activity. However, this is wrong from a semantic point of view. Tasks or subprocesses
with the same name are not necessarily exactly the same activity.

Imagine you have many more users in the process and many more tasks performed by multiple
roles. Readability and optimization of such diagrams becomes really hard.

Another approach is to separately model lanes for all combinations of roles that perform the
same activity. The strength of this solution is that collaborative activities are not duplicated and
are shown only once on the diagram. Remember that the meaning of lanes is up to you, and you
can categorize flow elements in any way.

For the Conduct Planning meeting process, we can use the following Lanes:
e PO
e Development Team (DT)
e Scrum Master (SM)
e Scrum Team = PO, DT, SM (this is the pool)
e PO+DT

65



2.2. Planning Meeting

The task Collaborate on work is modeled directly in the pool without using lanes, as in this example
pool means Scrum Team. We don't have any activity that is performed only by the Scrum Master
so such a Lane is not needed (Figure 42).

Many BPMN modeling tools don’t allow model
activities directly within the pool when lanes are
already added. You can then just add another
lane.

We don’t need a
separate lane for the
Scrum Master role.

N |4
Collaborate
on work
5 Renegotiate
T
selected
o
o items
s
£a —
U+ ]
t5 |5
g + |85 /~ ™\ | Discuss Product true
39 ‘g o \__/ Backlog items
- el
2
o

Determine false
delivery plan
Too much

or too little
work

Select Product Set up Sprint
Backlog items Goal

Development Team
(DT)

Figure 42: Lanes represent all possible combinations of collaborative activities

Again, imagine that you have many more roles and activities that are performed collaboratively
by a mix of roles. The number of lanes can increase significantly, which spoils readability. The
advantage is that a collaborative activity is modeled once. Another good point is that it's con-
sistent with BPMN semantics, and it's much easier to introduce changes in the model than in
the first approach.

Another solution is the use of a Collaboration, which represents, as its name indicates, collabora-
tion between two or more participants. In a Collaboration, every Participant is represented by a
separate Pool, and interactions between participants are modeled using message flows. We will
discuss and practice Collaborations in Section 2.5. BPMN Collaboration.

66



2.3. Daily Scrum

2.3. Daily Scrum

Process description:

The Daily Scrum is a Development Team internal meeting that lasts 15 min. During the meeting,
each Development Team member answers three questions:

1. What did you do yesterday?
2. What will you do today?
3. Arethere any impediments in your way?

The time of the meeting should be the same each day. In our exercise, let’s assume it’s 09:30.

We've already modeled the basic behavior of the Conduct Daily Scrum process. In Section 2.1. Intro-
ducing subprocesses, the solutions were to model the Daily Scrum meeting within the exception
flow from the Develop Increment subprocess or as an event subprocess. In both cases the timer
event is non-interrupting, so the parent process Develop Increment is not cancelled (Figure 43).

Develop Increment

Develop
Increment

8 ®
‘6:5 i Software

Develop

Conduct Daily
Scrum

Figure 43: Conduct Daily Scrum activity as subprocess within exception flow and as event subprocess within
Develop Increment subprocess

Both solutions represent the correct flow of the process. The interpretation from the business
point of view is as follows: as long as the team is working on developing an increment, Daily
Scrum meetings take place each day. Once the team finishes developing the Increment, the daily
scrum is no longer arranged.

Activity deadline
In Scrum, all meetings have a specific timeframe that should not be exceeded. In our examples
we introduce the deadline for the Daily Scrum meeting; however, the approach we present below

can be used in other cases.

67



2.3. Daily Scrum

If we want to model a deadline for an activity, no matter whether it's modeled within a normal
or exception flow, we use an interrupting timer event attached to the boundary of the activity.
Let’s practice this based on the Daily Scrum, which is a 15 min time-boxed meeting.

Develop
Increment

Conduct Daily
Scrum

15 min

Daily Scrum
ended

Daily Scrum
break

Figure 44: Activity within exception flow with deadline modeled using interrupting boundary timer event

Event subprocess deadline

Another thing that’s worth discussing is modeling deadlines for event subprocesses (Figure 45).

Develop Increment

Develop
Software

@\ Make ‘
|
Wy commitment

9:30

Figure 45: Conduct Daily Scrum as event subprocess

68



2.3. Daily Scrum

A very important rule related to event subprocesses is that you mustn’t use boundary events
attached to the event subprocess boundary.

TIP: You cannot attach any event to an event subprocess boundary.

Using boundary

: ................... : events for event

subprocesses is
forbidden

V

Conduct Daily
Scrum

Daily Scrum
break

Figure 46: Example of wrong usage of intermediate boundary event

We cannot directly set the deadline for the Conduct Daily Scrum event subprocess, but we may
do this for its activity, the Make commitment subprocess (Figure 47). If the timer event fires, it
immediately terminates the Make commitment subprocess. The Make commitment subprocess is
the only activity in the Conduct Daily Scrum event subprocess. If the only activity is cancelled
because of an interrupting boundary event, the whole Conduct Daily Scrum subprocess is also
cancelled as there is no active flow any more. This is a way to get around the rule saying that
events cannot be attached to an event subprocess boundary.

Title end events to show
that the process ends
differently

V

Make
commitment

Daily Scrum
ended

Daily Scrum

Figure 47: Using timer event as a deadline

69



2.3. Daily Scrum

TIP: Event subprocesses should start with one start event but may finish with multiple end events.

In order not to mix both approaches, from here we will only use the model in which the Conduct
Daily Scrum subprocess is modeled as an event subprocess.

Loop vs. multi-instance subprocess

Let’s now analyze the course of the meeting in detail. The whole Development Team takes part
in the meeting. During the meeting, every team member answers three questions one by one.
So the subprocess Make commitments is repeated for every team member. This is a signal that a
loop or multi-instance marker should be used (Figure 48). We've already discussed these
markers previously in Section 2.1. THEORY:: Loop subprocess characteristics.

A Conduct Daily Scrum |
.e{é Make
&/ commitment
9:30 Daily Scrum
Daily Scrum
break .
B

Make
commitment

Daily Scrum

Firgure 48: Make commitment subprocess with different markers: A - loop marker, B - multi-instance marker

70



2.3. Daily Scrum

The interpretation of diagram A is as follows: Subprocess Make commitment loops while all De-
velopment Team members make commitments to other team members.

Diagram B may be interpreted as follows. The Make commitment subprocess is instantiated for every
Development Team member present at the meeting. The activities are performed sequentially.

So what's the difference, and which approach is better? The questions that can help you make
the decision on which marker use are:

e Do we use a different data set for each performance of the Make commitment activity?

e Do we produce a different data set for each performance of the activity?

e Whether the activity is performed automatically?

We may interpret each member’s answers as independent output (so use solution B) or the
answers of all members as one meeting feedback (use solution A).

The loop marker is usually used to describe an automatic behavior so we recommend to use solution B.

Sequential tasks vs. multi-instance task

We know that every member answers three questions in sequence. The most natural interpretation
is to use three different tasks - a task for every question - in a given order using a sequence flow:

Questions

1. What did you do yesterday?

2. What will you do today?

3. Are there any impediments in your way?

‘/ \ Answer Answer Answer
N4 question 1 question 2 question 3

Figure 49: Sequential tasks

In above diagram the team member performs the same task three times: answer question.
The things that change are the question and the answer.

TIP: If the same activity is performed sequentially or in parallel with a different data set, use
a multi-instance marker.

71



2.3. Daily Scrum

We exactly know the inputs, the outputs and the number of instances (three questions and three
instances of the task). So another solution is to use a multi-instance task (Figure 50).

Questions

1. What did you do yesterday?

2. What will you do today?
3. Are there any impediments in your way?

N

Answer
question

Figure 50: Multi-instance task

Both models - using sequence tasks or a multi-instance task marker - are logically and semanti-
cally correct.

THEORY: Loop task characteristics

BPMN distinguishes two types of task markers that allow model looping behavior.

The loop marker means that the task is executed iteratively until a looping condition is
true. There is one task instance that performs some activity iteratively. It is usually used
to describe an automatic behavior.

P

The multi-instance marker also indicates that a task is performed many times. However in
this case every execution creates a new task instance. This means that for every iteration,
the task may use and produce a different data set. Tasks can be performed sequentially
or in parallel.

Multi-instance parallel marker Multi-instace sequential marker

72



2.4. Review Meeting

2.4. Review Meeting

Process description

The goal of the meeting is to review the sprint and revise the Product Backlog. Attendees are the
Scrum Team and stakeholders invited by the PO. First, the PO presents which items have been
completed and which are incomplete. Next, the Development Team discusses the sprint: they
demonstrate done items and answer stakeholders’ questions. In the next part of the meeting, the
PO reviews the Product Backlog. The whole group discusses presented Product Backlog items;
this results in revision of the Product Backlog. Output of the meeting: revised Product Backlog.

We can distinguish the following activities:
e Present Sprint items (PO)
e Demonstrate completed items (Dev Team)
e Answer questions (Dev Team)
e Review Product Backlog (PO)
e Discuss Product Backlog items (all)

Figure 51 shows the first version of the process model. Let’s discuss each step in more detail.

Present which items
were done and
which items are Demonstrate

incomplete >

done items

Present
Sprint items

Discuss Collaborate
Product on Product
Backlog Backlog

Answer
questions

Figure 51: Review meeting process

The process starts with presenting the current sprint state. In the above solution, we model it as
one task. If you want to show that the PO presents complete and incomplete items separately
as this is important from your point of view, you may use two separate tasks or a collapsed sub-
process that contains two tasks (Figure 52).

73



2.4. Review Meeting

Use subprocess if your
intention is to
decompose activity into
subelements

Present |2

Sprint items

Figure 52: Subprocess containing smaller elements

The next part of the meeting is conducted by the Development Team, who perform two basic activi-
ties: demonstrating completed items and answering stakeholders’ questions. In our above solution
(Figure 51), we use AND-split and AND-Join to show that these activities are independent and may
be performed at the same time - for example, during the demonstration, the team answers questions.
To indicate that completed items are presented one by one, a multi-instance marker may be used.

Many sequential instances.
Team might presents done
items one by one.

Demonstrate

done items

Figure 53: Multi-instance task

Let's now analyze in more detail the task Answer questions that is modelled between AND gate-
ways. The Development Team answers a question if it's asked by a stakeholder. Unlike the task
Demonstrate done items, occurrence of this task depends on stakeholder behavior. So there might
be no, one or many questions asked during presentation/discussion.

Our present model doesn'’t represent such a situation as on the diagram, the task Answer question
is always performed and is executed only once (Figure 51).

TIP: An interrupting event may occur zero or one time; a non-interrupting event may occur
zero, one or multiple times.

We've previously discussed the problem of some activity occurring many times during execution
of another process, when occurrence of the activity depends on some external events that are
not within the process flow. To solve such a modelling issue, we use a non-interrupting event
subprocess.

74



2.4. Review Meeting

Message event and process participants

We model the Answer question task within the event subprocess as triggered by a non-interrupting
start event, since questions may be asked many times. The type of event is message, as the event
subprocess is triggered every time a question arrives from a stakeholder.

=\ Answer
(™M

question

Stakeholders’
question

Figure 54: Event subprocess triggered by non-interrupting message event

In our process, a stakeholder represents another process participants as his/her behavior influ-
ences the Review meeting process and cannot be directly predicted. We don’t know how many
(if any) questions stakeholders will ask. Another reason why we interpret the stakeholder as a
different process participant than the Scrum Team is that a message event cannot be sent/caught
within the same pool, and every process participant is represented by a separate pool.

THEORY: Message event

A message event represents a message that arrives from or is sent to other Participant. By
message we may understand any content forwarded between Participants: order, question,
guestionnaire, form, etc. That’s why messages are also used to model data flows.

Messages cannot be forwarded within a process because the process represents one
Participant.

This rule also applies to different lanes. You cannot send a message between different lanes
that are within one pool. Lanes are used to categorize activities within the process so no
matter how many lanes you have, they all represent one process participant - the pool.

75



2.4. Review Meeting

Such a model is correct if message
is sent by and arrives from You don’t need to model
another participant (pool). external participants. It’s
You cannot exchange messages optional
within one pool. %
N

E ‘/i\\: ) Message thrown to

3 N N external participant
— . T L
1S
©
o
S
&E

~ P

A\ ,

2 Message caught ?‘\E/‘ » Task1l

© N/

- from external |- -

participant

Within a sequence flow, a message event can be modeled as a start, intermediate or end
event. BPMN additionally distinguishes two types of messages: catch and throw.

A catch event means that the process waits till the message arrives, so the process can go
further. A message start event is a catch.

A throw event indicates a place in the process where the process sends a message to an

external Participant. Once the message is sent, the process continues or ends. A message
end event is a throw.

A message intermediate event can be either a catch or a throw.

You may start a Throw message Youmayend a

process only with a intermediate event: process only with

catch message start Message is sent to a throw message
event external participant end event

e — |

ey o
/ \ (= (S
(™M Task 1 > () > (N )}
N N/ N

r 1
Catch message intermediate
event: process waits till
message from external
participant arrives

76



2.4. Review Meeting

An intermediate message event can also be attached to the boundary of an activity. It is
used to activate an exception flow after a message arrives. Only a catch message event
may be used. Like in other boundary events, the message event may interrupt or not inter-
rupt the execution of the parent activity. It's interpreted as follows:

- when Message A arrives, Task 1 is interrupted (cancelled), and the process continues only
through an exception flow to Task 3

> Task 2

- Messhge A

Interrupting message | -~
. P g g€ |. Task 3 .
intermediate event

- when Message B arrives, the process goes through an exception flow to Task 6. Remember
that in this case, Subprocess 4 is still active, so after it ends, the process goes to Task 5.

Subprocess 4J > Task 5

@

Messpge B
Non-interrupting message:|,-"

intermediate event Task 6

A message start event can be used to trigger an event subprocess. We can also distinguish
interrupting and non-interrupting message start events in this case.

Interrupting message et e, .

event interrups parent :

process and starts event
subprocess

N (=) Task 1 ‘

77



2.4. Review Meeting

Non-interrupting

message event starts PR LD 3

event subprocess. Parent : :
process is still active.

N : N
) Task 1 @

You may use message
end event in event
subprocesses

4

Catch events in the process

Let’s go back to our Answer question activity modeled within an event subprocess. As previously
discussed, we always need to decide at what point in the parent process execution we may catch
the event. In other words, within which process / subprocess our event subprocess should be
modeled.

TIP: If an event subprocess can only be triggered in a certain part of the process, use a sub -
process to narrow down the period in which the event can be triggered.

If we want to allow questions from stakeholders to be asked during the whole review meeting,
an event subprocess should be placed within the Review meeting process (Figure 55).

Discuss Collaborate
Present Demonstrate
Sprint items done items Product on Product
i Backlog Backlog

( E \ AnSV\{er ‘
N question

Stakeholders’
guestion

Figure 55: Event subprocess may be triggered during execution of the whole process

This approach seems to make sense; however according to the process description, questions
are asked only during the Development Team presentation.

78



2.4. Review Meeting

If we intend to narrow down the period in which stakeholders can ask questions to the meeting
part in which the Development Team presents done items, we need to separate out this part
of the process so that the event subprocess can be triggered only during the demonstration of
done items (Figure 56).

Discuss sprint

N Demonstrate .
\__/ done items

Present Discuss Collaborate
Sorint items R R R - Product on Product
P : : Backlog Backlog

E Answer ‘
question
Stakeholders’
question

Figure 56: Additional subprocess Discuss sprint is provided to narrow down the part of the process in which

the event subprocess may be triggered.

Event subprocess vs. boundary event

We've already discussed that the modeling issue related to triggering activities while executing
another activity can be resolved in two ways: using an event subprocess or using an event at-
tached to the activity boundary. The difference between these two approaches is in the process
that handles the additional flow and has access to subprocess variables.

We can resolve the issue related to triggering Answer question activity in two ways. Using an
event subprocess, as before (Figure 57A), or using a boundary event (Figure 57B). Notice that in
the second model, a boundary event is attached to the Discuss sprint process that includes only
one task. In such a case, there is no need to use the additional container (Discuss sprint process).
We may remove it without changing the process logic (Figure 57C).

79



2.4. Review Meeting

Discuss sprint

The event subprocess is
handled by the Discuss
Demonstrate . sprint subprocess.
done items The event subprocess has
access to all parent process
variables eg data objects.

4

1 Answer ‘
/ \
‘\I\_z_,l/ question
Stakeholders’
question

Discuss sprint

An exception flow is
handled by the Discuss
srpint subprocess’ parent

rocess — the Review
Demonstrate ‘ P .
. meeting process.

done items o .
Activities on an exception
flow don’t have access to
Discuss sprint subprocess
Py variables.
i ) %

Answer
question

Within the Discuss sprint
subprocess there is only one task
so there is no need to use it. We
may attach the boundary event

directly to the Demonstarte done
items task.

Both activities are handled by the

Review meeting process.

4

Demonstrate
done items

Answer
question

Figure 57: Answer question task handled by the Discuss sprint subprocess (A) and Review meeting process (B, C)

80



2.4. Review Meeting

Our current model looks as in Figure 58.

Ends of exception flow do not
end the whole Review meeting
process as main flow is still
active. Process ends when main

flow ends.
|74
B Di llabor
N Present Demonstrate Iscuss Collaborate
“ inti : Product on Product
N Sprint items done items Backlog Backlog
Review meeting

&)

ends
Stakeholders’

Answer
question

Question
answered

Figure 58: Review meeting process

Explicit goals of activities

Let's analyze the rest of the Review meeting process. After the team demonstrates Product
Backlog done items, the PO discusses the current Product Backlog, based on which the whole
team collaborate.

TIP: Create diagrams in a way so that someone who does not know the description of the
process is able to understand it by reading the model.

According to the meeting description, “The whole group collaborates on presented Product
Backlog items, which results in revision of the Product Backlog.” In the first version we called
the task Collaborate on Product Backlog. However, this name doesn’t necessarily make it clear for
readers. To explicitly show that the goal of collaboration is Product Backlog revision, we may:

e clearly title the task: Revise Product Backlog
e use text annotation
e associate the task with data input.

While the approaches are different, the objective of each is to show explicitly what is the
purpose of the activity. First of all, the name of the activity should convey what is being done

81



2.4. Review Meeting

and what its purpose is. If, however, you decide that this information is too complex to provide
through the activity name, use text annotation to provide additional needed explanations or
data objects.

Purpose of task not
clearly described

V

Collaborate

on Product
Backlog

Proposed solutions: .
Collaborate in YA

order to re R .

Product Backlog .

Product Backlog
[revised]

Collaborate

Revise Collaborate
on Product
Backlog

Product on Product
Backlog Backlog

Figure 59: Ways of explicitly showing the activity purpose

In the remainder of the example, we will use the new task name: Revise Product Backlog.

82



2.5. BPMN Collaboration

2.5. BPMN Collaboration

If we want to explicitly model interactions between our process and other process participants
that we understand as external participants, we can use collaboration. Collaboration is a common
way to show interaction between collaborating participants. Using collaboration we can solve
issues related to sending/receiving messages between participants and instancing a process/
subprocess many times by one of participants. Let’s first go through the theory.

THEORY: Collaboration

Collaboration represents interaction between two or more participants. Every participant
represents an independent process.

The main process from the modeler’s point of view is called the internal process. Other
participants collaborating with the internal process are represented by external processes.
As we already learned, a process can be modeled within a pool. In collaboration this is the
required way to show external process participants. An internal process can be modeled
without using a pool.

-
o
c -
© /
s | ([ —
B N/
©
a
|
|
|
|
! An internal process need
not be modeled withn a
N pool
L\\ J/ l/

b — — — —
H————

Participant 3

A pool may be modeled as a white box that shows the process details or as a black box
without any elements inside (as an ‘empty white box’). When we want to show commu-

83



2.5. BPMN Collaboration

nication between our process and an external process and the information on how the
external process looks is not relevant or unknown, we may use a black box pool. If the
process on the external user side is known and important from our point of view, we can
present it as white box pool.

_/ Message flow may be
attached to the pool
boundary for black box
pool or to the flow
objects for white box
pool

V

Participant 1

Participant 2
TN
{
-/
=
g
Ql“{/)

Model can contain any
number of collaborating
participants shown as
white or black box

V

Participant 3

In a collaboration, we may show interactions between any combination of participants
(white and black box pools). Interactions between participants are modeled using mes-
sage flows. A message flow is the only BPMN element that can cross Pool boundaries.
The whole process needs to be included within one pool.

Collaboration is closely related to message flow, so let’s also go through the modeling rules and
theory of the message flow.

THEORY: Message flow

A message flow is used to show associations between two or more participants, where
by participants we mean pools.

84



2.5. BPMN Collaboration

A message flow connects elements from different pools; you cannot use it to associate
elements within the same pool.

A message flow can connect activities, events and pool boundaries; the BPMN objects
that can be connected using message flows are:
e message event: start, intermediate and end
task boundary
subprocess boundary
pool boundary

If you include external participants in the diagram, connect the message flow to the pool
boundary (if it's black box) or pool activity / event (if it's white box).

s N A\
° (=) < ’ Message flow may
L \__/ ‘Q:;I;:l/' connect activities,
| events and pool
i ! boundaries.
T
I ! 14
! I
! I
! |
L u

Pool2

Review meeting process — collaborative or not?

Collaboration is usually used to show how your internal process influences and is influenced by
other participants. Sometimes, even if your intention is not to model Collaboration, it turns out
that some activities or events within the process do not depend on the process flow, and you
cannot directly predict when and/or how something happen. In this case you also need to model
your process as if it were collaborating with an external participant. Still, explicitly modeling
external participants is optional. Let’s practice these issues.

Based on the Review meeting process example, we will learn and practice how to model Col-
laboration. The process looks as follows (Figure 60).

85



2.5. BPMN Collaboration

o Di I
N Present Demonstrate Iscuss Collaborate
‘\ Sprint items done items Product on Product
/ Backlog Backlog . .
Review meeting

ends

question
Question
answered

Figure 60: Review meeting process

We want to model collaboration and organize the internal process elements within meeting
participants with different roles who take part in the meeting: PO (Product Owner), Develop-
ment Team and Stakeholders.

PO, Development
Development Team,
PO Team PO Stakeholders
N N N %
Di Revi
N Present Demonstrate IScuss R evise
NG Sprint items done items Product > Product
~ = Backlog Backlog

Review meeting
ends

Stakehjplders’
question

Answer
question

Question
answered

Figure 61: Analysis of which roles perform each task
Based on the above analysis, we model a first version of internal process (Figure 62). Look what
happens if we include all the defined roles within a pool without analyzing first what the interac-

tion with external processes looks like and who/what can be considered as external and internal
participants in the Review meeting process.

86



2.5. BPMN Collaboration

Lanes provide additional information on how
activities are organized. All lanes within a pool
indicate the same process partcipant.

N

2
+ o
= 3 i
53 Revise
+ 5 Product
O x
& ® Backlog

(%]

Discuss
Product ——
Backlog

Present

7N

Sprint items

Product Owner
(PO)

Demonstrate

Meeting Participants

done items

StakeHIders’
question

Answer
question

Development Team
(DT)

Question
answered

Figure 62: Review meeting process directly organized within lanes - first version

We called the pool Meeting Participants because the meeting attendees are not only the Scrum Team
but also the Stakeholders. Stakeholders, PO and DT are jointly represented by one lane as they all
take part in the Revise Product Backlog activity. The Demonstrate done items task and its exception
flow are performed by the Development Team, so it's modeled within a lane that indicates this
role. We also have a lane dedicated to the PO and two activities within it performed by this role.

What'’s wrong with this process? The first thing is that we have used different participants than
in the Review meeting parent process Take sprint. In the Take Sprint process, the pool indicates the
Scrum Team. Here the process participants are different and represent not only the Scrum Team
but also Stakeholders: Meeting Participants.

87



2.5. BPMN Collaboration

Another error is related to the message event and process organization. The Demonstrate done
items task contains a message catch event that may be thrown by a Stakeholder. In our diagram
(Figure 62), however, one of lanes indicates Stakeholders + PO + DT. Because of this process
organization, we confuse the reader.

TIP: If some performer is modeled as a participant (pool), don't indicate them in a lane in
another process within the same diagram.

The most important reason the model is wrong follows from the BPMN modeling rules. A mes-
sage event can be forwarded only between different pools. Here, because of a wrong definition
of a process participant - Meeting Participants, which means both Scrum Team and Stakeholders
- we cannot forward messages between them.

Identifying external process participants

Sometimes it’s just impossible to include the whole process behavior within one pool. Exclude
external participants from your process when:

e someone/something sends a message to an internal process participant

e someone/something receives a message sent by an internal process participant

e someone/something may trigger an internal process or subprocess many times

By process participant we mean any object or item that performs activities and fires events in
the process (system, role, company, person, device etc.).

Going back to our case, we may exclude Stakeholders from the internal Review meeting process.
The exclusion includes and influences the pool and lane. Remember that if you exclude an ad-
ditional external Participant from the internal process, you don't need to necessarily model it.
Including external process participants within a diagram is optional.

So the solution is to rename the lane that indicates Stakeholders + PO + DT and model the pro-
cess only from the Scrum Team perspective. Look at Figure 63: the pool represents the Scrum
Team, and the Stakeholders are not included in the diagram. To provide the information that
Stakeholders also take part in the Revise Product Backlog task, we use text annotation.

88



2.5. BPMN Collaboration

Stakeholders also
take part in this
activity

Revise
Product
Backlog

Scrum Team

Discuss
Product
Backlog

Present

Sprint items

"

Product Owner
(PO)

Scrum Team

Demonstrate
done items

(DT)

Stakeholders’
quegtion Answer

question

Development Team

Question
answered

Figure 63: : Review meeting process organized within lanes without Stakeholders

The current diagram represents the correct internal Review meeting process. Let's now add an
external participant - Stakeholder - to show how it collaborates with the Scrum Team.

Review meeting collaboration

Let’s practice the Collaboration model. We model Scrum Team and Stakeholder as separate pools.
This means that the Stakeholder represents another independent process. The Stakeholder col-
laborates with our main (internal) process. The internal process is performed by the Scrum Team,
the external process by the Stakeholder.

89



2.5. BPMN Collaboration

9]
o
[e)
<
(0]
v
o
& [l
T [ T
| | '
| | !
| | ibuti
| | Contribution
| | i
| | '
- | i
s | | Revise
= ~ i |
e -Question I Product
> I |
s | | Backlog
(%] ! I
| | A
— I I
(] I |
o | | .
c;) _ / | | Discuss
59 : Present | | Product ——
. 3= NG Sprint items ! ! Backlog
8 E | | 7Y
= I I
€ I I
§ ! Answer
2 |
3 | |
|
g Demonstrate
2 done iter'ns
c __
()
£b
£t
o
%J Answer
3 questio question
Question
answered

Figure 64: Review meeting modeled in Collaboration

From the meeting description, we know that Stakeholders take part in the meeting. They may
ask questions during sprint demonstration by the Development Team. They also take an active
part in the Product Backlog revision (task Revise Product Backlog) and may contribute to the

discussion. We use message flows to show these collaboration points.

TIP: Naming message flows is optional.

90



2.5. BPMN Collaboration

Multiplicity of Participant

Notice that we use a multi-instance marker for the Stakeholder pool. In BPMN this is the only
marker we can use with pools. It is used to specify that there are multiple Participant instances.
In our case, many Stakeholders may participate in the meeting; each of them may ask questions
and contribute to the Product Backlog revision independently of other Stakeholders.

When and how use Message flows

We know that Stakeholders take part in the whole meeting. They are the recipients of presenta-
tions presented by the PO (Present sprint items task) and Development Team (Demonstrate done
items). Let’s look once again at our previous solution. Knowing Stakeholders take part in the
whole meeting, we associated Stakeholders only with a message event and two tasks: Answer
question and Revise product backlog.

.
[
)
9]
<
[}
vl
8
& Il
? [ !
| \ !
| | ‘
| } Contribution
3 :
£ | |
8 ! . } Revise
c ~ -Queshon‘ } Product
g | | Backlog
@ } } 7'y
— ‘ ‘
[ ‘ |
g I I .
é _ | I Discuss
S / \/ P.res?nt } } Product ———
. _§ < \__/ Sprint items } } Backlog
8 & | | 7y
[ ‘ ‘
T T
g | Answer\
3 I
I
Demonstrate

|

\

\

done iterms |
A |

\

Answer
question

Development Team
(DT)

Question
answered

Figure 65: Collaboration with message flows - first version

91



2.5. BPMN Collaboration

The above diagram doesn't show that Stakeholders are recipients of the PO presentation and
Development team demonstration. According to the BPMN specification, message flows are used
to show the flow of messages between participants, and the message represents the content of
participants’ communication.

If we assume that Stakeholders listen to all the discussions and presented information, we may
model message flow from all the activities included in the internal process (Figure 66).

9]
=)
o
<
(V]
X
8
wv
1l
T 7 TF 5 T
|
! ! I ! .
: : ! : : Contribution
| | ! b
T t T ! ! "
£ ! | b |
st Presented | I | | ]
e sprint items I | ! ! Revise
5 | | || Discussed PrOiluct
3 ! Backlo
A ! : . Product Backlog g
L ! Done Question ! i
< [ items | : T
[0} | "
c 1 |
g P~ TN ! : : Discuss
5 & ( ) P‘resgnt | ! I Product
32~ \_ Sprint items 1 : : Backlog
€ o | |
5] & | | !
(7] | ! |
- | : ;
- .
S | nswer
3 .
wv ! i
|
€ | |
E Demonstrate| |
2 doneitems | |
Q= Y N -
€0 P ,
o
o (4}
[
o Stakehjolders’ Answer
O -
questio question
Question
answered

Figure 66: Collaboration with message flows - second version

Is such an approach correct? Yes - both from a BPMN technical point of view and the process
flow logic, you can model the collaboration in this way.

92



2.5. BPMN Collaboration

TIP: Use message flow to indicate relevant interactions between participants that actually
affect the process flow.

While modeling collaboration, use message flow to indicate relevant interactions between partici-
pants that actually affect the process flow. What constitutes a relevant interaction? It is one that:

e Is relevant from the internal process point of view.

e |s modeled using an explicit element of the process that enforces communication - e.g.
a catch/throw message. In our example, it’s receiving a question from a Stakeholder.

e Has influence on activity execution results. In our example, Stakeholders’ contributions
may have an influence on Product Backlog revision.

Black box or white box?

In the example solution, we've modeled the Stakeholder as a black box. External participants
can also be modeled as white boxes.

Before you decide to model an external process as a white box that contains all the processes
details, answer these questions:

1. Is the course of the process important from the internal process point of view?
2. Do you have enough information to model the process fully and correctly?

If the answer to one of these questions is NO, don't waste time and do not obscure the model
with unnecessary information that may only lead to misinterpretations.

If answer to both questions is YES, you may include process details on the diagram.

In more complex cases, it can also be a good approach to switch process context and separately
create models in which external participant processes are treated as the internal one.

93



2.6. Retrospective meeting

2.6. Retrospective meeting

Let's model the last meeting within the Scrum process example: Retrospective meeting.

Process description

In the meeting, the Scrum Team discusses what went well during the sprint and identifies needed
improvements. At least one process improvement should be contained in the next Sprint Backlog.

The sample solution for the Retrospective meeting process is presented below. We model tasks
Discuss sprint and Identify improvements as independent activities. Using text annotation we
indicate that sprint discussion focuses on what went well. We don’t know how exactly Discuss
sprint or Identify improvements activities are performed. Do they consist of smaller activities?
Usually during the meeting each team member writes/says what he/she liked during the sprint;
however, this is not part of our sample process description.

The process is modeled within a pool indicating the Scrum Team. We don’t use any lanes as all
activities are performed by the Scrum Team.

Discuss what went
-{ well during the
sprint

Discuss sprint

Scrum Team
™~
4

Identify
improvements

Figure 67: Retrospective meeting process

We can also use a collection data output element for improvements that are identified as a result
of the Identify improvements task and are an output of the whole meeting.

94



2.7. Process levels models

Scrum Team

Discuss what went
_.-| well during the
sprint

Discuss sprint

Identify
improvements

n

Identified
improvements

Figure 68: Retrospective meeting process with data flow

2.7. Process levels models

Let's once again sum up all models created within the Scrum process using pool notation.

We started with the top-level Scrum process that consists of the Take Sprint subprocess performed
iteratively. Next we created the detailed Take Sprint process that consists of a set of meetings and
Increment development activity. On the next level, we analyzed in more detail every child-level
subprocess of the Take Sprint process and created process models.

What conclusions we can put forward?

e The top-level process and its child-level subprocess at any level are modeled within the same pool.

Every process level can be organized in different ways using different lanes. It's good if
at every level, lane names are consistent; still, sometimes you simply don't need to use
some lane or it’s better to organize a particular child-level flow in other way. Process or-
ganization is up to the modeler.

When modeling some process, always show collapsed subprocesses and then model
them separately. The exceptions are event subprocess and parallel boxes: these can be
shown as expanded to facilitate understanding of the parent process.

e The way a child-level process ends (hnumber of end events and their states that indicate pro-

95



2.7. Process levels models

cess state) should be consistent with its parent process flow. In other words, if the subpro-
cess ends with two or more end events, these differences should be handled by the parent
process. An exclusive gateway can be used to handle different subprocess end states.

e Maintain the transparency of the process: if the process contains many activities, group

some of them that have some common subgoal within the subprocess.

€

3 ™

[t .

€ / Take Sprint ‘

£ \_/ ©

E =6

Figure 69:Top-level Scrum process

§ - Conduct Conduct Conduct
= N Planning Develop Review Retrospective
S \__/ Meeting Increment Meeting Meeting
3

Figure 70: Take Sprint process - high level view with collapsed subprocesses

Collaborate

on work

Scrum Team

5 Renegotiate
T
5 se_lected
o items
s
£a ¢
U+ (7]
[ <
o ~ .
g + |65 4 Discuss Product true
39 ‘g o \___/ Backlog items
- el
I
o

Select Product Set up Sprint Determine false
Backlog items Goal delivery plan
Too much

or too little
work

(D7)

Development Team

X

Figure 71: Conduct Planning meeting process

96



2.7. Process levels models

Develop
Software

Make
commitment

Scrum Team

Conduct Daily Scrum

Daily Scrum
ended

O

Daily Scrum
break

Figure 72: Develop Increment process and Conduct Daily Scrum event subprocess

Stakeholders are also actively

involved in this task

&
K Revise
g Product
5 Backlog
(%]

@

c

g . Discuss

59 P.resgnt Product ——

_§ Sprint items Backlog

a

Scrum Team

Demonstrate
done items

Development Team
(DT)

Answer
question

Question
answered

Figure 73: Conduct Review meeting process

97



2.7. Process levels models

Scrum Team

Identify
improvements

Discuss what went

-| well during the

sprint

Figure 74: Conduct Retrospective meeting

98




Example 3:

Library

A library is an organization in which we may define a number of processes like registering a
library card, ordering new books for the library collection, and many more. In this example we
model the sample process of borrowing books from the library. The library uses an IT system
to manage book borrowing. We don't impose any input requirements and assume that anyone
can borrow a book.

Learning outcomes

By the end of this example you will be able to:
e Analyze a process from the high level perspective
e Start creating a model of a top-level process
o |dentify top-level activities and starting and ending top-level process points
e Define transition conditions between top-level elements
e Know when to use event-based gateways
e Use terminate end event
e Use compensation - both in theory and practice
e Use a call activity
e Model Collaboration
e Understand end events - their effect and usage within a process

99



3.1. Borrow book process

Process description

A customer can order a book using an online account or directly in the library. Customers may
only order available books. If the desired book is already borrowed or ordered, the customer can
reserve it; the customer receives an email notification that he/she has ordered/reserved the book.

For a reserved book, the status of the book changes to ‘ordered’ at the point when the borrowed
book is returned to the library or in the event that a customer who previously ordered it cancels
the order. After that, the process follows that for an ordered book. A book can be reserved by only
one customer at a given time. A customer may also cancel an order or reservation from his/her
account or at the library; an email with information about the cancellation is sent to the customer.

An ordered book is prepared for borrowing by a library worker, and when it’s ready, the customer
receives an email notification that the book can be picked up. From this time, the customer has
three business days to pick up the book from the library. If the customer cancels his/her order
or does not pick up the book, the book is returned to the collection. If the ordered book has not
been borrowed within three business days, the order is cancelled.

When picked up, a library worker provides the book for the customer who comes into the li-
brary, the book’s status changes to ‘borrowed, the system sets up a borrowing period and the
customer gets an email notification about the period of borrowing. Information about the due
time is visible in the system for all customers.

Library books can be borrowed for a period of 31 days. The library system sends reminders to custom-
ers, 7 days and 1 day before the end of the borrowing period, informing them of the end date. The
library charges its customers for overdue books. Every two weeks from the time the book becomes
overdue, the system sends a message to the customer about the retention and the fee owing.

A customer may renew a borrowed book a maximum of three times. Renewal can be done only
if the book is not reserved by another customer and the customer doesn’t have outstanding fees
for any borrowed books. Renewals must be made not later than on the day the book’s borrow-
ing period ends. The system informs the customer whether the book has been renewed or not.

At the time of return, a library employee checks the state of the book and is authorized to

charge an appropriate fine if it is damaged. Information about the fine being charged is sent to
the customer’s email.

100



3.1. Borrow book process

3.1. Borrow book process

We start with developing the top-level Borrow book process. In the two previous examples,
identification of basic activities that were included within a top-level process was quite easy. In
the Bake cake example, we just distinguished two main cake elements as they were presented
in the recipe. In the Scrum example, its description and separate subprocesses descriptions
directly indicated the basic components from which we developed the top-level process and
subprocesses.

In contrast to the two previous examples, the borrow book process is quite involved, and speci-
fying the course of the top-level process is not so obvious. We know that the top-level process
should show the basic steps of the process and their sequence. The number of process elements
shouldn’t be large. These requirements are not so easy to meet. A top-level model influences
other subprocesses so it really needs to be carefully considered and modeled adequately. We
not only consider the basic process steps, but also alternative scenarios and possible starts and
ends of the process.

The following tips can be really helpful for analyzing a process in the context of a top-level model.

Define top-level process elements

To model a top-level process, try first to answer the following questions:
1. What are the process goals?
2. Who or what are the process participants? Which of these is the internal process partici-
pant? (From what point of view is the process to be modeled?)
3. What is the scope of the process?
4. How can the process start and end?
5. What are the basic steps of the process and the transition conditions between them?

Goals

From the customer’s perspective, the main goal is to borrow a book; from the library’s perspective,
the goal is good performance of the book borrowing service in accordance with the library’s terms.

Process Participants

One of the basic things that gives us a better understanding of the process is identification of
the process participants.

101



3.1. Borrow book process

Reading the borrow book process description, we can distinguish two main process participants:
the library and the library customer. Within a library we can additionally distinguish activities
performed by the system and by the library workers; however, this is related to the organization
of the internal process. We will return to this issue when we discuss Collaboration (Section 3.6.
Collaboration - advanced).

The scope of this exercise is to analyze and model the process from the Library’s perspective.
Internal participant: Library
External participant: Customer

A customer is a process participant that triggers and influences the course of the internal process.
In our example we consider his/her actions as external message events.

Scope

The process describes the book borrowing service starting from book ordering till the book is
returned back to the library.

Start events

The process starts when a customer wants to borrow a book. Depending on the status of the
book, the first possible activity is to order or reserve the book. This is our interpretation of the
process. In our solution we use one start point and we include different paths depending on all
possible book statuses:

e Borrow book

We can also look at the start points of the process from other perspectives. In the process descrip-
tion, a customer can either order a book from a library or using the online library system. Imagine
you are logged in to the library system to order a needed book. Only if the book is available can
you click on ‘order’ to start the process. The same applies with a reservation. If you see the book
is already borrowed or ordered, you can reserve it. The ‘reserve’ book action starts the Borrow
book process. We can define two start events - Order book and Reserve book - that directly lead
to the referenced activities.

It is your decision which to choose based on what information is more important to the reader
and how you wish to present the process.

102



3.1. Borrow book process

End events

In the basic scenario, the process ends with the return of the book.
e Book returned

The process may also end when:
e the customer cannot order a book;
the customer cancels their order;
the customer cancels their reservation;
the customer doesn'’t collect the ordered book from the library within a specified time.

If alternative flows end the process with the same conditions, we can consider one end event.
In our example, if we are not going to present within a process end state what is the reason for
cancelling book order (book not collected by a customer, customer cancelled book order), below
scenarios leads to the same process end event - Order cancelled:

e the customer cancels their order;

e the customer doesn't collect the ordered book from the library within a specified time.

Identifying all alternative end points can be really hard at the beginning; however, it’s really
helpful when modeling the lower level processes. You know how the subprocess starts and in
what statuses it should end. We will go back to this discussion later in the example. The decision
on whether to include all possible endings within the top-level model belongs to the modeler.

In Section 3.2. THEORY: End events - their effect and usage within a process, we present ad-
ditional information on how to model such cases.

Basic steps

So how to divide the process into smaller pieces? The general advice is: the top-level process
should show the order of the basic steps and at the same time should contain only a small number
of activities (plus required gateways and events).

This can be quite hard. You could, for example, start to list all steps in the order they occur, or

start from a very high view and try to divide it into smaller parts. The decisions on how to organize
the process and how much to specialize the activities are up to you.

103



3.1. Borrow book process

Let’s define the basic steps of the Borrow book process:

e Order book - subprocess containing everything that relates to ordering a book

e Reserve book - subprocess containing everything that relates to reserving a book

e Manage book order - subprocess containing everything that happens after a book is or-
dered till it's picked up from the library

e Manage borrowed book - subprocess containing everything that happens when a book
is borrowed by a customer

e Return book - all activities needed to return a book to the library.

TIP: If you are not able to correctly model all dependencies between parts of the top-level
process because of too much detail, or you think a process contains too many elements, use
a more general view that contains elements and relations you are sure of. You can always
model and analyze these details within the lower-level processes.

We have specified the basic steps of the process. We also know start and end points of the
process that are consistent with those presented on the diagram. Based on this information, we
model a first version of the top-level process (Figure 75). As previously discussed, we start the
process with a message event as an external process participant - the customer - triggers the
process. The process is modeled from the Library’s point of view.

Manage
Order book Manage borrowed Return book
ordered book book
Borrow book Book returned

A

Reserve book

Figure 75: Top-level Borrow book process - first version
Our current diagram presents the ‘basic simple’ flow between subprocesses that we distinguished
from the Borrow book process. The process shows the main activities and their sequence. However,

this is not a completely correct process because it doesn’t explicitly show when we can go from the
Order book subprocess to Reserve book subprocess and when to Manage ordered book subprocess.

TIP: If there are two or more outgoing paths from a subprocess, show in what situation we
choose each of the paths.

104



3.1. Borrow book process

What can we do to improve the process? The two most common approaches are:

e Include one process within another; in this way, we get a clear sequence flow between
two processes in the top-level view. The disadvantage is that we ‘hide’ a step that we
previously considered significant.

e Analyze the transition conditions in more detail and define them explicitly. More com-
plex transition details (such as alternative paths or gateways that branch or split flows)
don’t need to be included within the top-level process. However, if a subprocess has two
or more outgoing flows, it's recommended to explicitly distinguish between them: i.e., to
specify what is the subprocess end state that leads to the choice of each outgoing path.

Define transition conditions between top-level process elements

Let’s try to define and explicitly model within the top-level process the detailed flow between
top-level activities. We will also figure out when the process goes from the Order book subprocess
to the Reserve book subprocess and when it goes to the Manage book subprocess. This requires
more effort at the beginning, but it gives you and your readers a better understanding of the
process flow. What you need to do is to analyze what conditions should be met/under what
circumstances the flow may move from one top-level activity to another.

TIP: If the process is about processing some data/object, you can define data/object statuses
to explicitly determine transition conditions between process steps.

What's important at the beginning of the process we consider a book that is not managed by
the customer for which we instantiate the Borrow book process. In other words, we assume that
the customer has not yet reserved, ordered or borrowed the book. You can extend your model
and handle checking if the book is already ordered, reserved or borrowed by the customer and
what happens if any of the above is true.

e Book available - book is available, is not borrowed or reserved; customer can order
book.

e Book reserved - book is reserved by another customer; no action is possible

e Book borrowed - book is borrowed by another customer and not reserved; customer
can reserve book

e Book ordered - book is ordered by another customer and not yet collected; customer
can reserve book

105



3.1. Borrow book process

Let’s first consider transition conditions between the first two subprocesses: Order book and
Reserve book. The customer may directly order the book only if it's available. A book already or-
dered by another customer can be reserved. If the book is already reserved, the customer can’t
take any action.

Activity performance dependent on conditions

To model the Order book subprocess, we must make the execution of the activity dependent on
the book status. Let’s discuss two possible solutions:

A. Always start the activity and then cancel it if necessary, depending on the occurrence of
a given condition. In our case, the Order book subprocess would start immediately and
then if the book status is or is changed to reserved/borrowed or ordered, the activity is
cancelled (Figure 76).

B. Create separate flows that depend on the condition/status. So we start with checking
the book status, and make the course of the process dependent on the current state of
the book. Activities that can be performed when a book is in a given status are modeled
within the relevant flow (Figure 77).

Subprocess Order book
always starts. If book is
in status reserved or
borrowed, the
subprocess is cancelled

‘/ -~ »  Order book and an exc.eption flow is
\/ . . fired.
Borrow book @\‘ @E\P %
< &

Book Book
borrowed reserved
qr
ordered

—>

Figure 76: Order book subprocess performance dependent on book status - version A

106



3.1. Borrow book process

reservedg*O

First the book status is

Order book starts only if

checked. Subprocess

book is available.

|2
= .
\\E/ available— Order book >
_ e
Borrow book
Book
staftus
borrowed
or ordered

Figure 77: Order book subprocess performance dependent on book status - version B

In both versions A and B we make the Order book subprocess conditional on the status of the
book. Activity cannot be completed (version A) or cannot start (version B) when the book is in
a different status than available.

Wrong usage of exclusive gateway

Such behavior, when we need to check conditions to perform an activity, is very often modeled
incorrectly. Modelers reverse the course of the process by first performing the activity and then
checking the conditions. Look at diagrams in Figure 78. In both cases, regardless of the status
of the book we order it anyway, which is incorrect behavior.

1)

reserved4>0

borrowed
or ordered—

It appears that after completion of
the Order book subprocess, the
book may have one of four
statuses. Which is not true.

V

=
Order book available—»{@—»
BOFI‘O\;V book B(;ok

ordered

107



3.1. Borrow book process

2) It appears that as a result of the

Order book subprocess, the order is
Can book not made because we check if it can
be be ordered on the gateway.

ordered? |2

I
|

Order book Yes—> (N ———>

BorroW book Book
ordered

No

—

Figure 78: Activity performance dependent on condition - incorrect solutions

Model alternative process flows using exclusive gateway

In the remainder of the example we use version B (Figure 79) as the activity Order book cannot
start when the book is in a status other than available. Let's discuss this process in more detail.

reserved—»O

Manage
Manage borrowed
( E available—{ Order book ordered book book Return book
Borrow book Book

Bgok returned
status

borrowed
or ordered

Regerve
baok?

e

Yes

Reserve book

Figure 79: Top-level Borrow book process - second version

108



3.1. Borrow book process

We know that if the book is in status ‘reserved, a customer can do nothing so the process ends.
If the book is already borrowed or ordered, a customer may reserve it.

In the description of the process, we do not have direct statements that a customer may cease
from reserving a book because the book is already ordered, or that we may decide to reserve
an unavailable book. Much of the information in the borrow book process description is not
straightforward and, as in real life processes, should always be subjected to a deeper analysis
to ensure that all alternatives have been taken into account. In our exercise, as in real life, the
customer decides if he/she wants to reserve an already borrowed/ordered book.

Reserving a book is optional, so we again use the exclusive gateway to model this decision point.
If a customer doesn’t want to reserve the book, the Borrow book process ends; otherwise, the
flow continues to the Reserve book subprocess.

We have defined a top-level process taking into account possible decisions of the customer
before ordering or reservation takes place. Such an approach gives the reader clear information
on what are the possible transitions between the basic elements of the process.

Compared to the first version of the process, we have two more process endpoints, one of which -
indicating that a customer doesn’t want to reserve the book - wasn't listed during the earlier endpoint
identification process. We also have direct information on why the process takes some path (Figure 80).

Let’s also title the new end events so the reader knows exactly with what condition/state the
Borrow book process may end.

Whether or not to end the process with two additional end states depends on you. Instead of

two end events (No action possible, Book not reserved), you can, for example, use one end event
for two new alternative paths: no action.

109



3.1. Borrow book process

reserved—vo

No action possible

Manage
available Order book Manage borrowed Return book
ordered book book
Book

returned

&

Borrow book

borrowed
or ordered
Rederve
book?
QO
Book not
reserved
Yes

Reserve book

Figure 80: Top-level Borrow book process - second version with named end events

Including all possible process ends

Let’s now try to include all possible process endpoints within the top-level process. We already
included two more alternative scenarios with two different statuses of the process: Book not
reserved, No action possible. We have a few situations that may end the Borrow book process dif-
ferently than with the book returning. All of them have been previously identified:

e customer cannot order a book due to its status - this is already supported by our model

e customer cancels their order - not included

e customer cancels their reservation - not included

e customer doesn't collect the ordered book from the library within a specified time - not

included

As we discussed previously, it's up to the modeler whether the top-level process shows all process
endpoints. Remember that this is not mandatory. If including all or some other possible process
endpoints within the top-level process requires a really big effort and deep analysis of child-level

110



3.1. Borrow book process

processes, it's better to not do this while modeling the top-level process as it may cause some
inconsistences. In a later part of the example, we will discuss what to do when we find out that
within some lower level process there is the possibility to end the whole process instance that
was not previously identified.

As part of this exercise, however, let’s try to include all possible process endpoints within our
top-level model. First we need to answer the question: within which activities can the process
end in a particular way?
e customer cancels their order - Order book subprocess and Manage ordered book subpro-
cess
e customer cancels their reservation - Reserve book subprocess
e customer doesn't collect the ordered book from the library within a specified time -
Manage ordered book subprocess

As you can see, during execution of both the Order book and Manage ordered book subprocesses,
the same event may occur and as a result end the whole process.

TIP: If some event can occur during execution of two or more different activities, organize
these activities within one subprocess.

This is a signal that these subprocesses can be organized within one subprocess so we will
be able properly handle the same intermediate events. Let’s join these two activities into
one - Manage book order - so it will indicate from the top-level process that the subprocess
contains all needed steps related to book ordering and other steps performed till the book
is collected.

Below there is a model with all possible endpoints identified so far and with a Manage order book
subprocess that joins two previously specified subprocesses: Order book and Manage ordered
book (Figure 81). We present two versions:

e version A with separate end events indicating the separate process end states due to the
ways a book order may be cancelled: order cancelled, and book not collected resulting in
order cancellation (Figure 81). We additionally labelled exclusive gateways that handle
different subprocess end states; however, this is not required.

e version B with a single end event related to book cancellation (Figure 82). In this version,
inside the Manage book order subprocess we will join alternative paths: order cancelled
or book not collected which results in order cancellation, and finish them with the same
end event - Order cancelled.

111



3.1. Borrow book process

reserved—»O book not——»|
collected
No action possible Book not
collected

“/El\ ) Manage book book
=) order borrowed
Borrow book
borrowed
or ordered
order
cancelled
Regerve order possible
book?
Order
NOO cancelled
Book not
reserved
Yes
reservation
Reserve book
cancelled
Reservation
Reserve cancelled
book
process
end state

Manage
borrowed
book

Return book

Figure 81: Top-level Borrow book process with all identified process endpoints - version A

112

Book
returned



3.1. Borrow book process

rese rved—»O

No action possible

Manage
/= . Manage book book borrowed
I
‘\g/ order borrowed book Return book
Borrow book Book

returned

order
borrowed cancelled
or ordered
Order
cancelled
Regerve order possible
baok?

e

Book not
reserved

Yes

reservation
Reserve book
cancelled
Reservation
cancelled

Figure 82: Top-level Borrow book process with all identified process endpoints - version B

What conclusions can we draw from the above considerations?
e The top-level process can be modeled at various levels of detail.
e You can show explicitly using gateways what conditions must be met so the flow goes from
one subprocess to another or hide such details by modeling more general subprocesses.
e [f a subprocess has two or more outgoing paths, indicate the condition for each path to
be selected.

e You can hide or show all the alternative process endpoints. It's recommended to show at
least one end event from the main scenario.

3.2. Reserve book process

Let’s analyze in more detail the process of reserving a book. The process description that contains
the part of the process related to book reservation goes as follows:

If the desired book is already borrowed or ordered, the customer can reserve it; the customer receives
an email notification that he/she has ordered/reserved the book.

113



3.1. Borrow book process

For a reserved book, the status of the book changes to ‘ordered’ at the point when the borrowed book
is returned to the library or in the event that a customer who previously ordered it cancels the order.
After that, the process follows that for an ordered book. A book can be reserved by only one customer
at a given time. A customer may also cancel an order or reservation from his/her account or at the
library; an email with information about the cancellation is sent to the customer.

What can we learn from the description about the book reservation process? The process is
triggered when a customer decides to reserve a book. The first activity is book reservation, and
then an email confirming the action is sent. We also learn that a reserved book is automatically
ordered when one of two events occurs:

e another customer returns the reserved book

e another customer cancels their book order.

The first decision is to decide to model these events within the Reserve book subprocess. They
could be also modeled within the Ordered book subprocess. When modeling subprocesses, you
decide their scope. The beginning and end of the subprocess should be consistent with what is
happening at its entry and exit. The scope of the whole end-to-end process needs to be covered
by its elements.

To merge paths branched by an
event-based gateway we use an
exclusive gateway.

The event-based gateway may only
be used to branch a flow.

|
Reserve book
;(;X\
g
Book returned
=) ()
(@ Reserve book \L:‘)
Reserve Book Order possible
book reserved
=/
Order
cancelled

Figure 83: Reserve book process with event-based gateway

114



3.1. Borrow book process

To model the situation where the process waits for one of several events, we use an event-
based gateway. The behavior of the event-based gateway is similar to the exclusive gateway:
only one branch can be picked up. The difference is that we don’t define the condition at every
outgoing flow but we insert intermediate catch events. The first caught event determines the
further course of the process. In our case, occurrence of either of the events Book returned or
Order cancelled causes the process to follow the same path. Still, they are different events, and
we should include both in the model.

THEORY: Event-based gateways

BPMN specifies three types of event-based gateways: the event-based gateway that is
used within a process flow and two types of event-based gateways to start a process.

O ©

Event-based gateway Event-based gateway Parallel event-based gateway
tostarta process to starta process
The event-based gateway can be understood as an exclusive gateway driven by events. It
indicates a point in the process at which the process waits on one of a number of events to
occur. When the first relevant event occurs, the other outgoing paths are disabled. There
are three important modeling rules related to event-based gateways. They are applicable
to all three event-based gateway types.

1. Events that are included on outgoing paths from an event-based gateway must be catch
events. Only a few types of catch intermediate events are valid: message, signal, timer,
conditional and multiple. You cannot use the following intermediate events with the
event-based gateway: error, cancel, compensation or link.

2. Another rule is related to use of a receive task type. You may use a receive task with the

event-based gateway only if no catch message event is used and vice versa. Both ele-
ments cannot be used together within the same event-based gateway.

115



3.1. Borrow book process

Correct version.
All three events

are valid.
N
A\
&

=)

(=

N
=

3. The final thing you should remember is that events or receive tasks that are the target of

Incorrect version. Message
event is throw and only catch
events can be used with event-
based gateway. Compensation
event is not valid.

Incorrect version. Message
event and Receive task
cannot be used together
within the same event-
based gateway.

N N
) =\
‘i\!f/,)’ “\\@ﬂ‘
J’////:\:\ // ;x\
Tad) =
= Task

an event-based gateway cannot have other incoming flows.

Task

Correct version.
All three elements
are valid.

N

Event modeled with
event-based gateway
cannot have other
incoming flows.

|

». >//7\\3\ »

q’fl\ >
B

BPMN defines two types of event-based gateways that can be used to start a process.
When there are several possible events that may independently start the process, use an
event-based gateway to start the process. This is an exclusive event driven getaway that
behaves like an event-based gateway but is used only at the beginning of the process.

116



3.1. Borrow book process

A parallel event-based gateway to start a process is used, as its' name indicates, at the
beginning of a process when two or more events can instantiate a process. The first occur-
ring event starts the process; however, in contrast to the event-based gateway, the other
outgoing paths can still be used. So when we expect that one of several events can start a
process, and the rest of them should also occur even if the process is already instantiated,
use a parallel event-based gateway to start the process.

(Parallel) Event-based The first process
gateway to start a element is a (Parallel)
process cannot have P event-based gateway to .
incoming flows. This is ’}E\\; srat a process. This is \ )
incorrect version. = correct version. =

N N

)
()
N

Event-based gateways to start a process cannot have any incoming flow. This means that
you cannot use a start event as the first element of the process if the next element is a
(parallel) event-based gateway to start the process. These types of gateways must be the
first element in the process flow.

117



3.1. Borrow book process

If we define the two start points of the process that we discussed in the Section 3.1. Define
top-level process elements, we can use an event-based gateway to start the process (Figure 84).

A B

reserved4>O reserved4>O

No action possible No action possible

( available—> available—
=)
_/ ol
Borrow book Borrow book
borrowed borrowed
or ordered or ordered

Rederve @ Regerve
baok? baok?
QO 0O

Book not Book not

reserved reserved
Yes Yes

/\E / Reserve book >} —> Reserve book
Reser\;é book Reser\}é book

Figure 84: Two possible ways of start Borrow book process - version without (A) and with event-based-gate-
way to start the process (B)

We've already supported book order cancellation and book returning events within the Reserve
book subprocess. But what about cancellation of a book reservation made by a customer who
reserves a book?

Undo changes

Now we should add the possibility of cancelling the reservation. The first thing worth explaining
is how we understand the cancel reservation activity. We interpret it as a change of book status
from ‘reserved’ to it previous status. In other words, it simply undoes the activity that made

118



3.1. Borrow book process

the book status ‘reserved. But how we can cancel an activity that is already completed? The
solution to this type of modeling problem is compensation, which is a mechanism for undoing
already completed activities. Both boundary events and event subprocesses may only be fired
when the parent activity is active. Compensation catch events are the only BPMN events that
are fired for completed activities.

TIP: If you need to undo changes made by an already completed activity, use Compensation.

Look at the Reserve book process with added compensation in Figure 85. A compensation inter-
mediate event is attached to the Reserve book task. This is a catch event that can be fired only if
the task is completed. A compensation event is linked with a compensation handler - the Cancel
reservation task - that is responsible for undoing the changes made by the task.

Compensation added
to the Reserve book task

|4
Reserve book
N
(=)
Book
returned
\/@\ Reserve book /LVA\“
\—/ N/
Reserve 7 Book Order possible
book @ reserved
- //,:%‘
a2
\—
Order
Cance_l cancelled
reservation
<K

Figure 85: Reserve book process with Compensation

The compensation, like every event, needs to be triggered somehow. To trigger a compensation
event attached to some activity, we need to fire a throw compensation event first. The throw
compensation event must be included within the same process or a higher level process that has
access to the catch compensation event. Let’s now go through the compensation theory, and later
in the example we will come back to the issue of throwing compensation for the Reserve book task.

119



3.1. Borrow book process

THEORY: Compensation

Compensation is a mechanism for undoing activity that is already completed.

To properly model compensation, we need to have a compensation trigger, a compensation
catcher and a handler that performs the compensation. Let’s discuss how we may model
these elements step by step.

To start the compensation mechanism we first need to trigger the compensation. Com-
pensation can be triggered by a compensation end event or by a throw compensation
intermediate event.

When we know that on reaching
some point in the process, some
activity should be undone, we can
use a throw compensation
intermediate event.

V

N A\
() > (4q); »  Task1 —»O
N/ N

Compensation is thrown as a
result of the end of a Process
or sequence flow branch.

V

Task 1 —*@

We have now triggered compensation; now we need to catch it so it can be handled ap-
propriately. There are two ways of catching and thus handling compensation:

e A catch compensation intermediate event attached to the activity boundary that
needs to be compensated. In this case the handler is a compensation activity. The
compensation task is dedicated only to undoing the activity with which it's associ-
ated. It doesn't have any outgoing flow.

e \\\
)

120



3.1. Borrow book process

1) For compensation activity
use compensation marker.
2) Connect compensation
event with compensation
activity using association.

V

Task 1

Compensate
Task 1
K

e A compensation start event that triggers a compensation event subprocess (you
mustn’t trigger a normal subprocess in such a way). Within a subprocess you may
define throw compensation events that refer to compensation handlers defined
within a parent subprocess; you may also define additional activities that are need
to properly handle compensation, e.g. saving data.

| Compensate
Task 2

Using compensation
subprocess you may
define additional
activities and the
J Compensate order of compensated
Task 1 activities within a

« parent subprocess.

V

Task 2 Task 1

121



3.1. Borrow book process

Catch compensation events are fired only for an already completed activity. That's why,
unlike other events, we have not considered them in the context of the interruption or
non-interruption of an activity: we simply cannot interrupt an activity that is no longer
active. All other boundary events and other event subprocesses may only be triggered
when the activity is active.

So where we can add a throw compensation event that will trigger compensation for the Reserve
book task? Look at the model in Figure 86.

We first use message catch event Cancell
reservation, as directly after an event-based
gateway, only catch events can be used.

Catch compensation intermediate event
cannot be used in a sequence flow.

4

Reserve book

©

Book

returned 1
Order Order possible

cancelled

@

Book
reserved

Reserve
book

Cancel (@) @
reservation Cancel Reservation  Reservation
reservation cancelled

Figure 86: Reserve book process with compensation mechanism

Once again, after a book is reserved, three events may occur:
a. another customer returns the reserved book
b. another customer cancels their book order
c. the customer who reserved the book cancels the reservation

In the first two cases (a, b), if one of the two events occurs, the book is automatically ordered
so we go directly to the Manage book order subprocess. Case (c) describes the scenario that a

122



3.1. Borrow book process

customer may decide to cancel a reservation only if the reservation is valid so only if the book
is not ordered yet. If the book is ordered then its reservation simply will not exist anymore. The
event may occur after a book is reserved and before it is ordered.

We use an event-based race condition modeled using an event-based gateway: whichever event
occurs first, wins.

After the event-based gateway, we first use a catch message intermediate event Cancel reser-
vation. The throw compensation event cannot be used directly with an event-based gateway.
Another point is that the first customer needs to communicate with the library (we don't care if
it happens in a library or via the library system) in order to cancel a reservation. We need here
a communication point between two participants - a customer and a library - as cancellation
may by performed only on the initiative of the customer.

When a customer cancels a reservation, we fire compensation so the thrown compensation
event is used. Step by step, this works as follows:

1. Throw compensation Reservation event is fired.

2. Compensation is caught by the compensation catch event attached to the Reserve book
task (Because we have only one throw and catch compensation event within a subpro-
cess, naming them is optional).

3. The compensation catch event fires the flow to the compensation handler Cancel reser-
vation task that is responsible for undoing the changes made by the Reserve book task.

4. When changes are undone (Cancel reservation task ends its execution), the flow proceeds
from the place the compensation was thrown: in this case from the throw compensation
Reservation event to the next throw message intermediate event: Reservation cancelled.

Ending the whole process from the child level

After a book reservation is cancelled, an email confirming the cancellation is sent to the customer,
and the whole Borrow book process should end as it simply makes no sense to keep it active.

If we decide to expose the fact that the subprocess flow ends the whole top-level process instance,
we can pull out the different states the subprocess ends in using an exclusive gateway. We've
already presented such an approach in Section 3.1. Including all possible process ends. Look

123



3.1. Borrow book process

once again at the Reserve book process and the fragment of the top-level process that handles
this part of the flow. In this case, as we're sure that no other flow branch within the top-level
process is active, we use a none end event to end the Borrow book process with the information

that the reservation has been cancelled (Figure 87).

Reéérve
book

reserved

Cancel

reservation

Reserve book

Book<>—0rder

Book
returned

cancelled

Cancel
reservation

Reservation

Figure 87: Subprocess end states handled by the parent process

Order possible

) —)

Reservation
cancelled

order possible

reservation

cancelled :

Reservation
cancelled

Another way is to use a terminate end event directly in a child-level process which end state ends
the whole top-level process instance. It doesn’t matter at what level of the process the terminate
end event is triggered, it ends all process activities immediately. In such case we don't need to

introduce Reservation cancelled end event in a top-level process (Figure 88).

TIP: Use the terminate end event when:

e the end of a subprocess flow branch ends the whole top-level process

e one of many active branches within a top-level process ends the whole process instance

124



3.1. Borrow book process

Reserve book

|
X>—O

Reserve book

= o
N

Reserve ) Order possible
{ )}
book N reserved cancelled

N = N
N‘(E/“ w\‘\//“\"\ N"u\“
= N/ N/
reservation Cancel Reservation  Reservation
« reservation cancelled
/1

Terminate end event
indicates that the whole
Borrow book process ends.

Figure 88: Reserve book process with terminate end event

TIP: If performance of a subprocess may end the whole process, use a terminate end event,
or transfer this information to the parent process using an exclusive gateway with outgoing
flows indicating the subprocess end states.

Joining throw intermediate event and none end event

When the throw event is the last event before the process ends and there is an adequate end
event type specified in BPMN, you can ‘join’ these two events into one (Figure 89). We've ap-
plied this for the Reservation cancelled event (Figure 87).

125



3.1. Borrow book process

An intermediate throw event is the last element
before the process ends with a none end event.

Un such a situation, you may combine two events
and use the appropriate end event.

|4
Subprocess Subprocess
TN N -
( (o ) N
\ Task N )1 — (
N * \\“ ( ) = ‘\,,,/H Task @
Event 1 Event 1

Figure 89: End of the process - two equivalent versions

All differences between end event types and how to use them within child-level processes can
be found in section that follows.

THEORY: End events — their effect and usage within
processes

BPMN defines nine types of end events. An end event ends the instance of the process
or subprocess within which it is triggered. It is the last element in a sequence flow. All end
events are throw events.

End events are optional and independently used within processes and subprocesses. We
will go through all the types of end events and discuss them, taking into account how they
may be handled and how they influence the flow at different process levels.

None end event

O

The basic end event is the none end event; it is used when we don't need to define the
specific end result of the process. With this event you may define an end state of the process.

126



3.1. Borrow book process

If within a process or
subprocess one none end
event is used, defining the

end process state is

optional.
Task 1 ‘ l/

State A

State B

If process or subprocess may
finish in different ways (two
or more none end events are
used), you should define the
process end state for each.

V

If a none end event with defined end state is used within a subprocess, information about
how the subprocess ended is available to its parent process. A subprocess is a part of the
normal sequence flow, so you can refer to end states of the subprocess in other parts of
the parent process using gateways or intermediate catch events.

If you use a gateway after a subprocess
that may finish in different states, the
gateway’s outgoing flows should match
the subprocess end states; otherwise,
some behaviour may not be handled.

—O

State A

State B

N

State A—

State B——

127



3.1. Borrow book process

128

In this case, regardless of the status
of the subprocess, the parent
process will always be continued in
the same way. The question is
whether is it necessary to end the
subprocess with the indication of
various states?

V

State A

Task 3 .

State B

End events with optional catching

The message end event and multiple end event define some additional behavior. Message
and multiple end events can be used both within a top-level process and within subpro-
cesses. We group them together as for these end events there is no requirement and no
direct mechanism to catch them within a process. You can finish a process or subprocess
branch flow with a multiple or message end event, and that’s it.

Message end event

©

The message end event indicates that a process finishes with sending a message to another
participant (different process). As we discussed in collaboration (See Section 2.5. BPMN
Collaboration), you cannot use a catch message event (start or intermediate) to catch a
message sent within the same process.



3.1. Borrow book process

Multiple end event

®

The multiple end event can define many consequences of the process end. It is usually used
when many messages are sent as a result of the end of the process, but is not exclusively
for this purpose. Using a multiple end event, you can define any number and type of end
results, for example: an email is sent, an alarm sounds, a condition is set to true, etc.

You cannot directly catch a message thrown by a message or multiple end event within a
process; however, you can use the fact that the end event occurred. There are a number
of ways to do this: by using a rule intermediate event, multiple catch intermediate event,
or gateways. Such approaches are applicable also for throw intermediate events. Look at

the examples below.

Message A

Message B

We may use the information on what
message was sent to model a
decision point. Using an exclusive
gateway just after a subprocess that
ends with many message end events
is not necessary.

N

Message A—»>

Message B——

129



3.1. Borrow book process

Conditional intermediate
event fires when a condition
is true (when message A is
sent)
|2
=\
&@ Task 3
Message A State C
B sent
e
| T
\__/
Message A

End events requiring catching

The next group are end events that should be handled within the process. This means
that there should be a dedicated catch intermediate event that catches a result thrown
by the end event.

Error end event

®

The error end event indicates that a process ends with an error. For error end events used
within a subprocess, an error catch event should be defined to handle the generated error.
If an error end event is used within a top-level process and there is no handling mechanism,
for non-executable processes we may interpret it as an event that terminates the whole
process. Good practice is to handle the error that occurs. Using an error end event is the
only way to throw an error.

An error end event can be caught only by a catch error event. We may model it in two ways.
e Using an error intermediate event attached to the parent activity boundary within
which the error end event occurred. Use this solution if you want the higher level
process to handle the error. Remember that an error intermediate event may not
be directly used in a sequence flow.

130



3.1. Borrow book process

Subprocess

Error 1

Using an error start event to trigger an event subprocess that handles the error. Use this
solution if you want the parent subprocess or other subprocess to handle the error.

Catch error event attached to the activity boundary or triggering event subprocess termi-
nates the parent activity. It is an interrupting event. BPMN doesn’t define a non-interrupting
error event.

Error 1 is handled by an
intermediate error event
attached to the parent
activity boundary.
Error 2 is handled by an
event subprocess. Only in

this case can an error

start event be used.
|4

Error 2
AN
(A7) Task 5 ‘
N S
Error 2
N
&
Error 1
Task 4

131



3.1. Borrow book process

132

Escalation end event

®

The escalation end event means that as a result of the process, escalation is triggered.
Escalation must be handled within the process. Analogously to error handling, we can catch
escalation using an catch escalation intermediate event attached to the boundary of the
parent activity or using an escalation start event that triggers an event subprocess. When
catching escalation, the activity doesn’t need to be cancelled. We may use interrupting or
non-interrupting catch escalation events.

Remember that you cannot use a catch escalation intermediate event directly in a sequence
flow; however, using a throw escalation intermediate event is allowed.

Escalation catch
intermediate/start
event may be
interrupting or non-
interrupting.

V

Subprocess 1

Task 2 ‘

Task 1 .



3.1. Borrow book process

Compensation end event

©

The compensation end event also needs to be caught and handled. We've already discussed
the compensation mechanism in Section 3.2. THEORY: Compensation

Cancel end event

®

The cancel end event is used in a transition - that is, a subprocess controlled by a transition
protocol. Using transition, we may define a specific behavior of the subprocess. Transition
is usually used while modeling executable processes rather than non-executable ones, so
we won't discuss it here.

End events that can affect the entire model

Signal end event

®

The signal end event indicates that the process flow ends with a signal that is spread across

the whole model. The signal end event is an event that can be caught at any level of the

process and also by other processes. We can understand it as an alarm that can be heard

everywhere, and it can in fact be used to model an alarm event. To catch a signal thrown

by a signal end event (and also the throw signal intermediate event), we use the catch

signal event. In this case you may catch the signal in a number of ways:

e Using a signal start event to start a process

e Using a catch signal intermediate event in a sequence flow

e Using a catch signal intermediate event attached to the boundary of an activity - either
interrupting or non-interrupting

e Using an interrupting or non-interrupting signal start event that triggers an event sub-
process

133



3.1. Borrow book process

Thrown signal reaches any
process level and other pools.
You can use catch signal
events to catch the signal

Event Signal XYZ is
triggered when it

A catches Signal XYZ
anywhere in the model. thrown in Subprocess C
N v

TN
@) O
N
Signal XYZ State A
N
( }

< N 7=\

g =/

o

o State B

a

Subprocess C
O (4
(\\‘ //3
Signal XYZ State C

o

%) AN

§ | A\ Task 4 .

<] N
o Signal XYZ

N
Process starts by catching Signal
XYZ triggered in Subprocess C

Terminate end event

©

The terminate end event always influences the whole process within which it's used as it
ends the main process instance. It doesn’t matter at what level of the process the terminate
end event is triggered, it ends all process activities immediately. There is no compensation
or error handling. The terminate end event has no influence on other processes.

134



3.3. Manage book order

Subprocess 1 .
P Terminate end event

State A immediately ends all
activities in the
process. The whole
process ends.

V

State B

There is no possibility to catch a terminate end event. It stops a process instance.

3.3. Manage book order

The Manage book order subprocess should show the part of the flow starting from book ordering
and ending with the event when a customer collects the book from the library (in the positive
basic scenario). Let’s start by analyzing the part of the Manage book order subprocess that relates
to ordering a book. Part of the process description that contains the order book description is
as follows. (The description is a mix of order and reserve book processes.)

A customer can order a book using an online account or directly in the library. Customers may only
order available books. If the desired book is already borrowed or ordered, the customer can reserve it;
the customer receives an email notification that he/she has ordered/reserved the book.

.... A customer may also cancel an order or reservation from his/her account or at the library; an email
with information about the cancellation is sent to the customer.

The next part of the process description says what can happen after the book is ordered till it's
picked up from the library.

An ordered book is prepared for borrowing by a library worker, and when it’s ready, the customer
receives an email notification that the book can be picked up. From this time, the customer has three

135



3.3. Manage book order

business days to pick up the book from the library. If the customer cancels his/her order or does not
pick up the book, the book is returned to the collection. If the ordered book has not been borrowed
within three business days, the order is cancelled.

When picked up, a library worker provides the book for the customer who comes into the library, the
book’s status changes to ‘borrowed, the system sets up a borrowing period and the customer gets
an email notification about the period of borrowing. Information about the due time is visible in the
system for all customers.

Within the top-level process we have already modeled the conditions under which a book can be
ordered. The subprocess starts if a customer decides to order a book. Notice that in our model
we don’t distinguish whether it happens in a library or via the library customer application.

The book is ordered, and then an email confirming the action is sent. The ordered book is pre-
pared for collection from the library. This fragment of the process may look as follows (Figure 90).

N N //5\

( } N [

() orerbock (@) @ —
Order Book Book ready
book ordered for pickup

Figure 90: Order and prepare book activities

Use of event-based gateway — advanced

After the book is ready for pickup, one of three events may occur:
a. Customer picks up the book within 3 days.
b. Customer doesn'’t pick up the book within 3 days.
c. Customer cancels order. (Notice that in the description we have additional information:
If the customer cancels his/her order or does not pick up the book, the book is returned to the
collection. This means that the order can be cancelled by the customer up until the point
where the book is picked up (or until expiration of the 3 day period).

If a customer picks up the book (scenario (a)), a library worker provides the book for the customer

who comes into the library, and the system sets up a borrowing book deadline and sends required
information to the customer.

136



3.3. Manage book order

In situations (b) and (c), the order is cancelled. We use compensation triggers to trigger compen-
sation for both the Order book and Prepare book tasks. We add a compensation handler to the
task Prepare book because if the customer cancels the order, a prepared book is returned to the
collection. We interpret it as undoing the changes made by the task Prepare book. Analogously
we add a compensation handler to the Order book task (Figure 91).

Translating this description directly to the model, we get:

Throw compensation event triggers both
catch compensation events attached to Order
bookand Prepare bookactivities as both are
visible to the trigger.

|4
Manage book order

Cancel order
) Order book Prepare book @
= - o
Order Book f 1\ Book ready 3 business days Order
book ordered N for pickup cancelled

Set up

Cancel { Provide book borrowing
Cancel order X \— .
preparation X deadline
K Pick up book Book
borrowed

Figure 91: Manage book order subprocess - first version with 2 possible end states of the process

The above diagram (Figure 91) is compatible with the top-level Borrow book process from Figure
82, where there are two possible process endpoints of the Manage book order subprocess: book
borrowed or order cancelled. We may also model a second version of the Manage book order
subprocess that can end in three ways - book borrowed, book not collected, or order cancelled
- and is compatible with the top-level process presented in Figure 81.

137



3.3. Manage book order

Manage book order

Cancel order Book not

collected
Order book @ 9
Book Book ready 3 business days Order

- ordered for pickup cancelled

. . Set up
. Cancel order Lo Cancel @ Provide book borrowing
preparation . deadline
« K Pick up book Book

borrowed

Figure 92: Manage book order subprocess - second version with three possible process end states

In the rest of the example we use the solution in Figure 91.

Compensation of many tasks within the same process

A compensation throw event triggers compensation for all activities that are within its scope. By
the scope of this compensation we understand undoing the Order book and Prepare book tasks.
Only activities that are “visible” to the compensation trigger can be compensated.

What behavior does the current diagram show (Figure 91)? Let’s read it in the context of cancel-
ling an order and achieving compensation.

The customer has ordered a book, and the book is prepared and is ready to be picked up; at
the time when the customer could pick up the book, he/she decided to cancel the order. The
completed tasks Order book and Prepare book are compensated in reverse order. Next an email
confirming the cancellation is sent, and the whole Borrow book process is terminated.

The current model (Figure 91) handles the scenario in which the order is cancelled for a book that is
ready for collection. But what about the situation where the customer cancels the order before the
book is ready to be picked up? We may imagine that the customer orders a book during the holidays
or the weekend when the library is closed, so it may be quite a long time till the book is ready for col-
lection. Even when the library is working normally, it of course also takes time to prepare abook. Such
ascenario is not handled. Our model should show that the customer can cancel the order at any time:
from the moment the book is ordered to the end of the period in which he/she can pick up the book.

138



3.3. Manage book order

To handle this we use an interrupting message event attached to the Manage book order subprocess
boundary (Figure 93). A Cancel order message is sent by the customer. This event can be caught
at any time while a Manage book order is active. It also means that we don’t need to additionally
model a catch Cancel order message event on an outgoing flow from the event-based gateway.

TIP: A compensation trigger defined within an event subprocess is visible for compensated
activities modeled within a subprocess that contains the event subprocess.

Manage book order
3 business days  Cancel
order
Order book
Book Book ready
ordered for pickup
K Set up
Provide book borrowing
. deadline
Cancel Pick up book Book
Cancel order .
prepartion borrowed
<«
) Book order compensation
@—@
Cancel order Order Order
: cancelled
No
®)
A Cancel order
Handle Book order compensation event subprocess
may be fired in two ways. A compensation is thrown
when a customer cancels the order (Cancel order
message event is caught) or if after 3 business days a
client doesn’t pick up the book. Cancel order

Figure 93: Manage order book process with compensation event subprocess fired from exceptional flow

139



3.3. Manage book order

The Cancel order message event fires an exceptional flow that as a result triggers the compensa-
tion event subprocess. The book order compensation event subprocess may be triggered in two
ways: when a customer cancels the order and when a customer doesn’t pick up the book within 3
days. Using a compensation subprocess, we can also enforce the sequence that the compensation
for the task Order book is carried out first, followed by the task Prepare book (this is reasonable
because first the order is cancelled, and then the library worker gets this information so they
can return the book to the collection).

Within the Book order compensation subprocess, we additionally check if the book has been
prepared to be picked up - in other words, if the task Prepare book is complete. Compensation
should be triggered only for completed tasks, so if a customer cancels the book order before
the book is ready to pick up, there is no need to compensate the Prepare book task. It’s already
cancelled by the interrupting message boundary event.

Following this, a further question arises - what if the Order book task has not been completed?
In this case, the customer simply cannot cancel an order that does not yet exist, so there is no
problem. We don’t have this information explicitly provided on the diagram; to show it you may
add a text annotation or model the external process for the customer.

We can also model the Cancel order message as a start event that fires an event subprocess
within the Manage book order subprocess (Figure 94). In this case the model is compatible with
the top-level process within which we haven't modeled any exceptional flow from the Manage
book order subprocess.

140



3.4. Manage borrowed book

Manage book order

3 business days  Cancel
order
Prepare book <
Book Book ready
book ordered for pickup
. . Set up
. . — Provide bookH borrowing }—-@
. . Cancel Pick up book deadline Book
+ ) Cancel order . .
« prepartion borrowed

. Cancel order  Cancel order :

(W«

. Cancel order Order

Order
cancelled -

Figure 94: Manage book order process with compensation event subprocess fired from another event subprocess

3.4. Manage borrowed book

The next step in our process relates to the period when a book is borrowed. Let’s go through
the description of this part of the process:

Library books can be borrowed for a period of 31 days. The library system sends reminders to customers,
7 days and 1 day before the end of the borrowing period, informing them of the end date. The library
charges its customers for overdue books. Every two weeks from the time the book becomes overdue,
the system sends a message to the customer about the retention and the fee owing.

141



3.4. Manage borrowed book

A customer may renew a borrowed book a maximum of three times. Renewal can be done only if the
book is not reserved by another customer and the customer doesn’t have outstanding fees for any
borrowed books. Renewals must be made not later than on the day the book’s borrowing period ends.
The system informs the customer whether the book has been renewed or not.

The subprocess starts after the customer collects the book from the library and ends only when
the book is returned. Looking at the process from the library’s point of view, we have a sequence
of actions that the library system performs based on the book borrowing period:

(R NN BNy B S W=
7 days before 7days 1 day before lday Borrowing Borrowing
deadline reminder deadline reminder deadline period ends

Figure 95: Manage borrowed book subprocess - first version

The system sends messages to the customer based on how the borrowing period progresses. We
use a timer intermediate event to indicate when each successive action should be triggered. The
process waits at every timer intermediate event till a defined date, then goes on and a message
is sent. The first action from the library since the book is borrowed is sending a message 7 days
before the borrowing period ends; the next message is sent 1 day before the borrowing period
ends; the last message is sent when the borrowing period ends. When the borrowing period is
exceeded, the library charges a fee every two weeks from the due date.

Loop subprocess without end event

Let's analyze how to model the Charge fee subprocess.

Charge fee

N )
( } > > | ) » Charge fee
N \\\@/" &

2 weeks

=)
i\::://
Charged fee

Figure 96: Charge fee subprocess

142



3.4. Manage borrowed book

The Charge fee subprocess is modeled as a never-ending loop. In our example process descrip-
tion, we don't have any information on how many times or for how long the library charges fees.
The process starts repeatedly with a timer event that is fired every 2 weeks starting from the
borrowing period deadline. Every two weeks, the library charges the fee for a non-returned book
and sends information to the customer. Next, the flow goes back to the timer event, waits for
two more weeks and is repeated.

This is an example of a process without an end event. We have one process instance that per-
forms the same activities cyclically and never ends. As you can see, this is an exception to the
rule that if we use a start event we should also have an end event within the same process: this
is not required if the flow returns and creates a loop.

Process has start event and doesn’t

have end event because it finishes

with a loop subprocess in which an
end event cannot be defined

V

Manage borrowed book

R~ — N~ — W -~ —
7 days before  7days 1 day before lday Borrowing
deadline  reminder deadline reminder deadline period ends

Figure 97: Example of process that is a loop or is finished with a loop so no end event is defined

Process designed as a loop vs. loop activity marker

If the subprocess is a loop, why we don't use a loop activity marker? Loop activities are under-
stood as activities in which an action is repeated continuously, one at a time. However, it is not
possible to define a downtime between successive repetitions. That's why in our case, where
there is a specific break between the subsequent executions, we cannot use a loop marker.

TIP: In a loop activity (with loop marker), every repetition is made one at a time, without time
breaks between the subsequent executions.

143



3.4. Manage borrowed book

Breaking the loop process

So how can we end the Manage borrowed book subprocess? There are two external actions that
influence the process and lead to its end. The action that definitely ends the process is the return
of the book by the customer. This action is external as it depends only on the customer - he/
she decides if and when to return the book. Because this is an external action that terminates
the Manage borrowed book subprocess, we can model it in two ways:

e as an interrupting intermediate event attached to the subprocess boundary

e as an event subprocess that starts with an interrupting message event

We decide to use an event attached to the activity boundary, as the event is a way out of the
subprocess and leads to the next top-level subprocess, Return book (Figure 98). When the event
is fired, the Manage borrowed book process is terminated and the flow should continue to the
Return book subprocess (we will go back to this issue).

Manage borrowed book
/ '7\‘ //’f:\ /// f;\ /7’2%\ //’;x\ /f;‘\\ /;’\\
( ) ) > ()} (€ L)) > ()} > (€ Ly) > ()
S O ({8 chametee
7 days before 7days 1 day before 1day Borrowing Borrowing
deadline reminder deadline reminder deadline period ends
(=)
=/
Return book

Figure 98: Manage borrowed book process with return book event

Another event that may break the Manage borrowed book process is book renewal. Book renewal
can be done only till the borrowing period is not exceeded. Every renewal extends the borrow-
ing period of the book. To handle this case, we need to ‘unpack’ part of the flow that represents
the borrowing period and model the possibility to break it by an interrupting intermediate event
attached to the subprocess boundary. Let’s call this part of the flow Manage period (Figure 99). If
the book is renewed, it's necessary to define the new borrowing period, so a new Manage period
process instance should be created.

144



3.4. Manage borrowed book

Manage period subprocess contains library behavior
when book borrowing period is not exceed.

We add an action that breaks this subprocess and leads to
creation of a new Manage period subprocess instance
(with new borrowing period)

V

Manage borrowed book

Manage period

o2 o808 00y

7 days before 7days 1 day before 1day Borrowing  Borrowing
deadline reminder deadline reminder deadline  period ends
)
N\
EVENT THAT CANCELS
Manage periqd subprocess

@

Return book

Figure 99: Manage period subprocess with interrupting event attached to its boundary

We deliberately haven’t defined the type of boundary event for the “EVENT THAT CANCELS
Manage period subprocess” as there is one more issue to analyze. Not every book renewal is
finished positively because three conditions must be met. According to the description:

A customer may renew a borrowed book a maximum of three times. Renewal can be done only if the
book is not reserved by another customer and the customer doesn’t have outstanding fees for any
borrowed books. Renewals must be made not later than on the day the book’s borrowing period ends.
The system informs the customer whether the book has been renewed or not.

This means that firstly, we need to model the part of the process that handles book renewal
steps. Let’s call this subprocess Renew book. Secondly, an event that triggers the Book renewal
subprocess should be non-interrupting. Why? Because during execution of the Renew book sub-
process, we gain information on whether the book could be renewed or not. If the conditions
are met and the library may renew the book, then the Manage period process should break and
start again. If the conditions are not met, the renewal cannot be made.

Because this part of the process consists of several steps, we propose to use an event subprocess
called Renew book modeled within the Manage period process, as only when this process
is active can a user try to renew the borrowed book (Figure 100).

145



3.4. Manage borrowed book

Renew book
'E N N N @
Renéwal Book
request Book Charged renewed
reserved feps
=3 yes
@ @ L@
Book not Book not Book not
renewed renewed renewed

Figure 100: Renew book event subprocess

Conditions on exclusive gateway leading to the same results

We have checked all three conditions using exclusive gateways (Figure 100); if some condition
is not met, the book cannot be renewed and the subprocess is ended. But all three alternative
paths give the same result: the book cannot be renewed - so we may join them and use only
one end event.

TIP: If alternative flows lead to the same end result, you may merge them using an exclusive
gateway and use a single end event.

Renew book

'\: E\‘, X <3 no no Renew book 9

Renewal Book
request Number of Book Charged renewed
renewals reserved feps
yes

Book not
renewed

Figure 101: Renew book event subprocess - one end event

146



3.4. Manage borrowed book

The order of conditions at the gateways matches how it's shown in the description. However,
we may assume for the purpose of the example that from the flow perspective it doesn’t matter
at all which condition is checked first. Look at the simplified process:

TIP: If the condition order is not relevant and all lead to the same result, use one gateway
that checks all the conditions.

Renew book

Number of renewals < 3
AND
Book not reserved

| AND

| No charged fees

E Renew book
Book
renewed

Renewal
request

Book not
renewed

Figure 102: Renew book event subprocess with one Exclusive gateway that represents all conditions

Using a Renew book subprocess we show:
e that a book renewal can be made only when the borrowing period is not exceeded
e what conditions must be met so the customer may renew their book

Now we may use a Renew book subprocess end state to make it dependent on if the Manage period
subprocess has terminated or not. Look at the proposed solution in Figure 103. An interrupting
conditional intermediate event is triggered if the book is renewed. So the process Manage period
is cancelled if the book is renewed, and the book renewal itself is triggered by the customer.

147



3.4. Manage borrowed book

Manage borrowed book

Manage period

7 days before 7days 1 day before 1day Borrowing  Borrowing
deadline reminder deadline reminder  deadline period ends Charge fee
EEEERRERTR . [+

Book r¢gnewed

<@

®
&

Return book

Figure 103: Manage borrowed book process

Consistency with parent process model

The returning of the book, which is modeled within the exception flow, ends the whole Manage
borrowed book subprocess and provides the link to the next top-level step. Such a model is not
only inconsistent with the top-level process but also indicates and can be interpreted as if Return
book is some exception from the Manage borrow book subprocess (Figure 104). Maybe this is
some exceptional returning and the basic flow is already handled within the Manage borrowed
book subprocess?

Manage
borrowed book

Return book ‘
Book

returned

Return book

Figure 104: Top-level relations through exceptional flow

In the top-level Borrow book process we design the normal flow between the Manage borrowed
book subprocess and the Return book subprocess (Figure 105).

148



3.5. Return book

Manage
borrowed Return book
book
Book returned

Figure 105: Part of the top-level process showing relation between Manage borrowed book and Return book

subprocesses.

To show the relationship between the above two processes in a consistent way, you can simply
additionally ‘unpack’ everything that's inside the Manage borrowed book subprocess and derive
its end as a standard sequence flow. This is an acceptable solution, but you still have to rename

the existing processes. Another way is to use an event subprocess instead of a boundary event.

This is also a good reason to think about including the Return book subprocess within the Manage
borrowed book subprocess.

3.5. Return book

The last step is related with book returning. From the description:

At the time of return, a library employee checks the state of the book and is authorized to charge an
appropriate fine if it is damaged. Information about the fine being charged is sent to the customer’s email.

g/ ™ Check book R X o ‘ X ‘®
\__/ state
Book returned
Chdrge
fep?

yes

//\\
‘M/
\/

Charged fee
for book damage

Charge fee

Figure 106: Return book subprocess - first version

There is one more issue: should we provide tasks indicating that the book has been returned -
e.g. Accept book back? There is no such activity in the process description. However, if we want
to indicate that the book state is changed to, e.g., ‘available’, it's good to explicitly model the
activity that changes the status of the book (Figure 107). Still it’s not required.

149



3.5. Return book

7N Check book Accept book @
\_/ state back
Book
returned

ey
Charge fee ()}
N—
Charged fee
for book damage

Figure 107: Return book subprocess - second version

TIP: If some activity leads to producing or changing some data, model it explicitly in the diagram

150



3.6. Collaboration - advanced

3.6. Collaboration — advanced

Let's sum up all the created models within the Borrow book process and try to model Collaboration.

reserved4>O
No action possible
- Manage
N
™M} available—| V12128€ book book borrowed Return book
\/ order borrowed book
Borrow Book
book Baok returned
status
order
borrowed cancelled
> or ordered
© Order
S cancelled
Regerve order possible
baok?
e
Book not
reserved
Yes
Reserve book reservation
cancelled
Reservation
cancelled

Figure 108: Top-level Borrow book process within pool - Library

Black box external process

All models have been created from a library perspective, so this is the internal participant. A
customer represents an external participant that collaborates with the library. We don’t know
the Borrow book process details from the customer’s point of view - the process is described
only from the library’s point of view. We model the customer as a black box pool.

The top-level Borrow book process is composed of subprocesses (Figure 108). At every stage of
the process, within every subprocess there is some collaboration between the library and a cus-
tomer. We can model this information within the top-level internal process so every subprocess
is associated with the Customer pool (external process participant) through a message flow.

151



3.6. Collaboration - advanced

If you consider such a diagram to be too general, you can first identify the points of collaboration
within individual subprocesses and then transfer this information to the top-level model, naming
the individual message flows; alternatively, do not model collaboration in the top-level process.

Different instances of external processes that influence
the internal process

Let's model each Library subprocess’s collaboration with a Customer as a collaborate black box
external process participant. We start with the Reserve book process.

o)
1S
]
(%]
>
O
T T ? T =
| T | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
T | T T T T
| | | | | |
| | | | | |
| | £ |
| N |
| ( ) |
! | (=) L !
| : Book | | :
: I returned : : :
|
| |
/; * ~ — /j&\ ! '
(™) ) ( : |
= | = N\ = !
£ |Reserve () Book Order : Order |
5 book N reserved cancelled possible :
: ! |
| |
7N 72N
> | )} {( )
Cancel @ ‘@/
reservation Cancel Reservation Reservation
« reservation cancelled

Figure 109: Collaboration - Reserve book process

Is this model (Figure 109) correct? The diagram says that all three message catch events: Cancel
reservation, Book returned and Order Cancelled are sent by a customer. And this is true; however,
different customers may return the book or cancel an order, and a different customer cancels
an already made book reservation. The current model shows that the same customer performs
all three actions, which is incorrect.

152



3.6. Collaboration - advanced

TIP: Distinguish external process instances if different instances have influence on one in-
ternal process instance.

What are the possible solutions that may arise and what are their meanings?

a. Add a multi-instance marker to the pool representing external process. This could then
be interpreted as different customer actions that are available for various customers and
for a given book. This is a correct solution form technical point of view, but still we won't
show that different customers may trigger different actions explicitly, so for the reader
who doesn’t know the process, it can be misleading (Figure 110).

.
()
€
o
2
wv
>
) I
T B T T 7 =
| | | | | |
| | | | | |
| | | | | I
| | | | | |
| | | | | I
il ! il il il |
| | | | | |
| | | | | :
| | | |
| : //i\\ | | :
|
. ! & !
| | — | | |
! ! Book I I I
| | | | |
| | returned | | |
| | | | |
//1\ //é\ 'Y\ ! :
\ e\ = |
™ Reserve book —»/ )| (™) I
> | \/ N/ = | !
j= — //:3\\ T '” | |
g Reserve %) Book Order | Order |
= book N7 reserved cancelled : possible :
: | |
| |
i )} i |}
= D7
reservation Cancel Reservation Reservation
« reservation cancelled

Figure 110: External process as multi-instance process

b. Create separate pools that represents a customer who reserves a book and a customer who
has already borrowed the same book or ordered it. Let’s call these pools Customer A and
Customer B and explain these differences in text annotation (Figure 111). The benefit of
such an approach is that we explicitly show that all three events are the results of Library-
Customer collaboration and that separate customer processes handle particular events.

153



3.6. Collaboration - advanced

Customer A pool
indicates a customer

who reserves a book.
L ]

.
Q
€
[e]
S
(%]
>
O
? Y ¢ T
1 | ! 1
1 | ! 1
1 | ! 1
1 | ! 1
1 | ! 1
1 : ! :
1 | ! 1
1 | ! 1
! | ! |
! | ! |
! | ! |
! | i ! |
: | B|0k : |
| : returned | :
I | I ] |
v 5 1 1 ,
I I I
Reserve book 9 | )
> . - | !
_‘E" Reserve Book | Ordler Order :
i book reserved . cancelled | possible !
. I : I :
: I ! I
. | /y\
— @
: >
Cancel : ,w
reservation | : Cancel Reservation Reservation
: I reservation cancelled
I
X |
| I
| I
1
; [
| I
| I
| I
| I
I
L
o
<
()
€
[}
2
w
S
O

Customer B pool indicates a |.
customer who returns/cancels an |
order of an already reserved book.

Figure 111: Separate external processes represent the different instances of a Customer

154



3.6. Collaboration - advanced

c. In this case we model only the collaboration that relates to the Reserve book process
from both the Library and Customer views (Figure 112). The benefit of this approach is
that we provide within the model only information strictly related to the Reserve book
subprocess from the viewpoint of both the Library and of the Customer who is directly

involved in the Reserve book subprocess of a specific book.

—
[J]
€
o
%
>
(@]
T T A
| | |
| | |
| | |
| | |
| | |
| | -
| | |
| | |
| | |
| | |
| A |
| | |
| | |
| | |
| | |
| | |
| | |
v I I
= ) !
( ( ) |
> | = !
g Reserve / Order Order
5 book N reserved cancelled | possible |
: | |
| |
/V\ —
N /"
> ™)) »(4q)
Cancel N/ N\
reservation Cancel Reservation Reservation
reservation cancelled

Figure 112: Within collaboration we model only message flows related to the same Customer process instance

Subprocess within a pool — what to do with boundary

events

Let’s discuss collaboration for the Manage book order process. When you present a particular
subprocess within a pool, it represents an end-to-end process. The subprocess’s graphical bound-
ary doesn’t exists in this context. The issue that arises is how to model a boundary event that is

155



3.6. Collaboration - advanced

attached to the subprocess that we want to present separately within a pool. This issue exactly
shows the difference between a boundary event and an event subprocess. You cannot include a
boundary event while separately modeling a subprocess within a pool - not only because the
boundary doesn’t exists but also because a boundary event is handled by the parent process
(Figure 113). If you want to handle and also model within a pool behavior triggered by an event,
use an event subprocess. Let’s do this for the Manage book order subprocess (Figure 114).

Manage book order
3 business days  Cancel
order
Book Book ready
book ordered for pickup
Set up
Provide book borrowing
. deadline
Cancel Pick up book Book
Cancel order .
prepartion borrowed
«
Book order compensation
Yes
. Cancel order Order Order
. Book feady cancelled
for pick
N
(=)
Cance| order
N
If we model Mange book order as an end-to-end
process within a pool, the boundary event Cancel
order will not be included within the pool. Cancel order

Figure 113: Manage book order subprocess with boundary event

156



3.6. Collaboration - advanced

9]
£
8
3
o
? *? T T T 7 ?
1 1 ! ! 1 1 1
1 1 ! ! 1 1 1
1 1 ! ! 1 1 1
| 1 ! ! | | |
] 1 T ' ] ] ]
1 1 ! ! 1 1 1
1 1 ! ! 1 1
1 1 ! ! 1 1
1 1 ! ! 1 1
1 1 ! ! 1 1
1 1 ! order | 1
5 5 : 1 1
Order book Prepare book : :
1
Book Book ready 1 l :
f 1
book ordered : for pickup X Set up 1
! Provide book borrowing
! h ! deadline
! Pickup 1 Book
3 Cancel order Cancel : book ! borrowed
« prepartion | :
1
. I
! 1
o Clzent cancels order X
©
2 v 1
5 1
& —@
o
Cancel order Cancel order -
1
Cancel order Order
Book feady cancelled
for pick
K N

Figure 114: Manage book order process - collaboration

157



3.6. Collaboration - advanced

Message flow associated with collapsed subprocesses

In the Manage borrowed book process there are two subprocesses: Charge fee and Return book.
We can try to model them expanded; however, the Manage borrowed book process then becomes
‘overloaded’. Because we know exactly how the interactions inside the process look, we may
model all occurring interactions using message flows and additionally labelled them so the user
from the parent process level gets information on what kind of collaboration occurs in the child-
level subprocess (Figure 115). If you don’t know all the collaboration points within a child-level
subprocess or there are many of them, you can just draw ‘empty’ message flows to and/or from
a subprocess to inform the reader that there is some collaboration at this level (Figure 116).

Customer

>

= 3
1 1
Renewal | Book
request 1 renewed
1 1

2 |- = = = o

|
t T
Book not 1
1

1

7 7
1 1 1
1 1 1
1 1 1
| | |
X T T T
1 1 1
Ch d
: renewed ! ! ! a[ee
- L L L fee
: I I Manage period! I |
1 1 1 |
b X X X X
. . I | 1 \
: Renew book : : : !
1
! ! ! o
........... \ \ \
1 1 1
g L L I Charge fee
=
7 days before  7days 1day before 1day Borrowing Borrowing
deadline reminder deadline reminder deadline period ends

®
Boolﬁjiwed

Figure 115: All message flows occurring within a subprocess are presented and labelled on the parent process
level

158




3.6. Collaboration - advanced

Customer

- — -

e
e
- —|----

Manage periodi

4______
o

Ny R

=

Library

7 days before  7days 1day before  1day Borrowing  Borrowing
deadline reminder deadline reminder deadline  period ends

Book renewed

<O

N

Example without Return book event.
You can add proper event subprocess
or arrange current process within a
subporcess and add a boundary event.

Figure 116: Manage borrowed book process - message flows associated with subprocesses

System-driven and human-driven processes

The Borrow book process is described from the library’s perspective. Within a library we can dis -
tinguishactivities performed by the system and by the library workers. Such a division is related
to the organization of the internal process.

Most of the activities modeled in the Borrow book process and its subprocesses could be ‘as-
signed’ either to the system or to a library worker. Let’s take for example the Order book task: it
could be interpreted as a task made by the system (change book status to order) or by a human
(library worker orders the book for a customer who comes into the library). Such an issue usu-
ally concerns processes that are mix of steps driven by humans, systems or by humans with the
support of systems.

Let’s try to organize the process between a library worker and a library system. Note that in
a general process description we don’t have explicit information on whether the worker, the

159



3.6. Collaboration - advanced

system or both perform some step. If your model needs to expose human-system interac-
tions, use collaboration and note carefully during analysis which steps are performed only
by a human, which are performed by the system, and if the human or system is the trigger
for some step.

The model presents two scenarios that are also not directly distinguished in the process description.
1. Customer orders a book using the library system - in this case some of the activities are
directly made by the system.
2. Customer orders a book in a library - in this case a library worker triggers some system
activities.

The processes models presented in Sections 3.1-3.5 are of course correct - they show the pro-
cess flow according to the process description. However, they lack information on what exactly
is done by a human and by the library system.

The following models (Figure 117 and Figure 118) are an extended interpretation of the process,
to show how a human-system-driven process can be modeled. The library system sends mes-
sages both to the customer and to the library worker, which means that a customer gets an email
with proper information and a library worker sees proper notification/status in his/her library
system account (or also gets a system email). A library worker also provides needed information
to the system, which is also shown using a message flow and additional catch message events
if required. Any user-system interaction is modeled using message flows.

Let's discuss some interesting topics that may appear in connection with the presented models.
The first thing you should note is that the activity Provide book performed by the library worker
is modeled as a subprocess. The reason is that in Collaboration, this activity requires communi-
cation with two other participants: Customer and Library system.

Imagine the library worker provides the book to the customer; this is a simple activity: usually he/
she just gives the book to the customer (first task - collaboration with Customer) and before doing
this provides the information that the book has been picked up to the system - e.g., by scanning
a code on the book cover (second task - collaboration with the Library system). Another task
that could be included in this subprocess is to verify if the customer is the person who ordered
the book - e.g., by checking an identity document or a library card. This could be an additional
point of collaboration between the Library worker and the Customer. In other words, we could
split the Provide book activity into smaller tasks.

160



3.6. Collaboration - advanced

Prepare book
Book drdered Book
| | borrowed
| | | I
. | | | [
g | | Cancel | 1
g | | preparation | 1
=
g I ! I : !
S | ! (. !
I ! (I I
| | L @@
| | ' I
| ! | : Unddbookl | Order
| | |+ preparationl | cancelled
| | | 1 [
| | REREE R R R R
] ! | [
| | | | [
| AN \ | [
| | | [
| | | ]
3 | | | |
§ I I | I
g | | | |
e I I I I
! | | |
1 | (D S i — i T
! | | ! 1 | | N — = | |
! ' 1 ! I 1 I ! 1 1
! | ] ! ] ] | : ] ]
! | ! | | | |
| | v
| | | | | | | Set up | 2
| | Borrowing 9
| | | | | . |
| | dedline
| | | | | Book I Book
! | 1 | ! ! | picked up | borrowed
! o I ! | I | I
¢ ; | v s | |
|
| | |
Book | Book Book ready | |
ordered | prepared for pickup | |
| | |
| | |
. ! | |
3 Cancel order | | | 3business  Cancel
<« | | days order |
% Cancel order ol !
> ! s |
5 - s I
= © !
. P
Cancel order Cancel order -+ | |
|
.................... | |
| |
T leoos
Book order compensation |
|
Yes
* Cancel order Order Undo book Order
N preparation cancelled .
prepared N

Figure 117: Manage book order process collaboration between library worker and a system - scenario:
customer orders a book using the library system

161



3.6. Collaboration - advanced

Does this mean that while modeling the Manage book order process in Section 3.3 and using tasks
instead of the subprocess Provide book we made a mistake? Well, not necessarily: remember that
you decide the scope of the process, and you decide how you understand and how you want
to present activities within a process. Within Example 3 we've been analyzing and modeling
processes on a detailed level that were described directly in the process description, without
considering what are/could be other possible smaller tasks. We are not going to do this; however,
we want to show within a Collaboration what the interactions between participants look like.

TIP: While modeling Collaboration, if an activity requires communication with two or more
participants, it's a good idea to consider splitting the activity into smaller parts or adding a
catch and/or throw message before/after the activity.

In comparison, the newly provided Order book task in Figure 118, which is performed by the Li-
brary worker, has two message flows from and to the same participant - Library system. For such
tasks, it is less common to split them into smaller tasks or to use throw/catch messages; however,
depending on the purpose and flow of an activity you may consider such a modeling approach.

When modeling Collaboration, you are forced to analyze the activity in terms of how and with
how many participants each activity collaborates. This is also a really good test for your model
because you consider the process from different perspectives - taking into account different par-
ticipants of the process - and not only the sequence and dependencies within the process itself.

The second topic concerns introducing new BPMN elements within processes representing
different participants - such as message events and tasks - in comparison to the Manage book
order process modeled in Section 3.3, where such elements were either simply not necessary or,
in most cases, incorrect because communication within the same process was involved. In both
scenarios we provided the BPMN elements that are needed to properly present user-system
interactions taking into account how the process or particular step within a process is initiated
(by the customer, a library worker or the system) or who is the main performer of the activity.

Third topic - compensation. Notice that processes are modeled in a way that separates the trig-
gering of compensation for the Library worker and for the Library system. The reason for this is
that compensation cannot be triggered for a different process. For example, in both scenarios,
to trigger compensation of Prepare book, the library system informs the Library worker that the
book should be returned to the collection (the way it does this is not relevant to our discussion).

Fourth topic - process end statuses. It's your decision whether to use analogous or different end
process statuses for collaborating processes. The decision depends on how you organize the

162



3.6. Collaboration - advanced

whole model and what happens after each process is finished. In our model, in both scenarios
we use the same end event names: Book borrowed for the basic positive scenario and Order can-
celled for the second, alternative process end. However, as the Library system is responsible for
managing the Borrow order book process, you could name the end events differently within the
Library customer process: for example, book provided (instead of book borrowed) or book available
(instead of order cancelled).

The last topic is related to when it is better to use additional message events and when tasks
(BPMN specifies special types of tasks that are responsible for sending or receiving messages:
Send and Receive tasks; we will not discuss them here). A message event represents an event
- a single action - whereas a task represents some activity. If a collaboration is related to some
additional activity, it’s better to use a task. See at our model examples (Figures 117 and 118).

163



3.6. Collaboration - advanced

Booklorder Book
reqliest X , borrowed
1 1
1 [ !
1 [ !
5 1 [ !
* 1 [ !
E 1 [ !
> | [ [
©
£ 1 L
=i 1 [ Cancel order ol
1 [ _ - :
1 [ A\ N ‘ :
! s N\ ‘1 .
\ - .
! ! -Cancelorder  Capcel -
| [ { .
, ' reqlljes\ orger | cancelled
1 [ e [P S .
1 [ | ! 1
1 [ | ! 1
| L N | I
[ ™ | ! [
1 [ | ' 1
|
1 [ | \ 1
T T
N [ : 1
o oy 1
£ , |
S I | I
32 [ \ 1
© [ l
L : I
T L | T
Fmm==7 1 \ 1 ! 1
1 1 1 | 1 1 1
T T T ) T T T
1 1 1 | 1 1 1
! ! ! I ! Set up !
I 1 I | 1 B . I
orrowing
! 1 1 | | . !
| \ \ , dedline \
1 i Book Book
: ! ! I I picked up : borrowed
1 | ,
| | - I
. 1
) i X
I Book Book ready ! \
! prepared  for pickup : \
1
I I !
I I !
. X , |
- Cancel order I I 3 business  Cancel !
« I I days order !
£ ! ! X
L ] I 1
2 e \
& N I Cancel order .
z : s !
8 . v o !
8 . . 1
2 : H (@
. c 1
. Cancelorder  Cancelorder . !
N [
1 1
1 1
Book order compensation !
1
1
@
« Cancel order Order Undo book Order
preparation cancelled :
N

Figure 118: Manage book order process collaboration between library worker and a system - scenario:
customer orders a book in a library

164



Would you like to learn more

What conclusions we can draw?

If we model a human-system-driven process within one pool, the process may lack in-
formation on how exactly some activity is performed. Is it triggered by a human or only
system-driven? If you want to model detailed dependences between human and system
responsibilities, use collaboration.

Compensation has to be separately triggered within every process.

You can associate a collapsed (event) subprocess within a given process with other pro-
cess participants using message flows. If message flows are not titled, use a maximum of
two associations to/from a subprocess.

If a process may be managed by a human or (mainly) by a system, create separate models
for human- and system-driven scenarios.

Depending on whether a process is managed by a human or a system, the communica-
tions between process participants may be different.

A message event may represent different types of communication between participants,
such as an email, a conversation, an alert or message displayed in a system, etc.

Would you like to learn more?

The most effective way to learn is by practicing on solving real-world problems.

If you want to

learn BPMN from scratch
exercise and deepen your knowledge about how to model business processes
discuss your questions and diagrams

... Then visit www.modelingview.com

165



References

References

1. Business Process Model and Notation (BPMN), Version 2.0, January 2011 https:/www.omg.

org/spec/BPMN/2.0/
2. The Scrum Guide™, November 2017 https:/www.scrumguides.org/scrum-guide.html

166


vojoudi_a
Highlight


		2019-11-02T08:45:50+0000
	Preflight Ticket Signature




